动手深度学习PyTorch(八)RNN

RNN

RNN(Recurrent Neural Network)是一类用于处理序列数据的神经网络。首先我们要明确什么是序列数据,摘取百度百科词条:时间序列数据是指在不同时间点上收集到的数据,这类数据反映了某一事物、现象等随时间的变化状态或程度。这是时间序列数据的定义,当然这里也可以不是时间,比如文字序列,但总归序列数据有一个特点——后面的数据跟前面的数据有关系。

RNN它并非刚性地记忆所有固定长度的序列,而是通过隐藏状态来存储之前时间步的信息。首先我们回忆一下前面介绍过的多层感知机,然后描述如何添加隐藏状态来将它变成循环神经网络。

6.2.1 不含隐藏状态的神经网络

让我们考虑一个含单隐藏层的多层感知机。给定样本数为 n n n、输入个数(特征数或特征向量维度)为 d d d的小批量数据样本 X ∈ R n × d \boldsymbol{X} \in \mathbb{R}^{n \times d} XRn×d。设隐藏层的激活函数为 ϕ \phi ϕ,那么隐藏层的输出 H ∈ R n × h \boldsymbol{H} \in \mathbb{R}^{n \times h} HRn×h计算为

H = ϕ ( X W x h + b h ) , \boldsymbol{H} = \phi(\boldsymbol{X} \boldsymbol{W}_{xh} + \boldsymbol{b}_h), H=ϕ(XWxh+bh),

其中隐藏层权重参数 W x h ∈ R d × h \boldsymbol{W}_{xh} \in \mathbb{R}^{d \times h} WxhRd×h,隐藏层偏差参数 b h ∈ R 1 × h \boldsymbol{b}_h \in \mathbb{R}^{1 \times h} bhR1×h h h h为隐藏单元个数。上式相加的两项形状不同,因此将按照广播机制相加。把隐藏变量 H \boldsymbol{H} H作为输出层的输入,且设输出个数为 q q q(如分类问题中的类别数),输出层的输出为

O = H W h q + b q , \boldsymbol{O} = \boldsymbol{H} \boldsymbol{W}_{hq} + \boldsymbol{b}_q, O=HWhq+bq,

其中输出变量 O ∈ R n × q \boldsymbol{O} \in \mathbb{R}^{n \times q} ORn×q, 输出层权重参数 W h q ∈ R h × q \boldsymbol{W}_{hq} \in \mathbb{R}^{h \times q} WhqRh×q, 输出层偏差参数 b q ∈ R 1 × q \boldsymbol{b}_q \in \mathbb{R}^{1 \times q} bqR1×q。如果是分类问题,我们可以使用 softmax ( O ) \text{softmax}(\boldsymbol{O}) softmax(O)来计算输出类别的概率分布。

6.2.2 含隐藏状态的循环神经网络

现在我们考虑输入数据存在时间相关性的情况。假设 X t ∈ R n × d \boldsymbol{X}_t \in \mathbb{R}^{n \times d} XtRn×d是序列中时间步 t t t的小批量输入, H t ∈ R n × h \boldsymbol{H}_t \in \mathbb{R}^{n \times h} HtRn×h是该时间步的隐藏变量。与多层感知机不同的是,这里我们保存上一时间步的隐藏变量 H t − 1 \boldsymbol{H}_{t-1} Ht1,并引入一个新的权重参数 W h h ∈ R h × h \boldsymbol{W}_{hh} \in \mathbb{R}^{h \times h} WhhRh×h,该参数用来描述在当前时间步如何使用上一时间步的隐藏变量。具体来说,时间步 t t t的隐藏变量的计算由当前时间步的输入和上一时间步的隐藏变量共同决定:

H t = ϕ ( X t W x h + H t − 1 W h h + b h ) . \boldsymbol{H}_t = \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{hh} + \boldsymbol{b}_h). Ht=ϕ(XtWxh+Ht1Whh+bh).

与多层感知机相比,我们在这里添加了 H t − 1 W h h \boldsymbol{H}_{t-1} \boldsymbol{W}_{hh} Ht1Whh一项。由上式中相邻时间步的隐藏变量 H t \boldsymbol{H}_t Ht H t − 1 \boldsymbol{H}_{t-1} Ht1之间的关系可知,这里的隐藏变量能够捕捉截至当前时间步的序列的历史信息,就像是神经网络当前时间步的状态或记忆一样。因此,该隐藏变量也称为隐藏状态。由于隐藏状态在当前时间步的定义使用了上一时间步的隐藏状态,上式的计算是循环的。使用循环计算的网络即循环神经网络(recurrent neural network)。

循环神经网络有很多种不同的构造方法。含上式所定义的隐藏状态的循环神经网络是极为常见的一种。若无特别说明,本章中的循环神经网络均基于上式中隐藏状态的循环计算。在时间步 t t t,输出层的输出和多层感知机中的计算类似:

O t = H t W h q + b q . \boldsymbol{O}_t = \boldsymbol{H}_t \boldsymbol{W}_{hq} + \boldsymbol{b}_q. Ot=HtWhq+bq.

循环神经网络的参数包括隐藏层的权重 W x h ∈ R d × h \boldsymbol{W}_{xh} \in \mathbb{R}^{d \times h} WxhRd×h W h h ∈ R h × h \boldsymbol{W}_{hh} \in \mathbb{R}^{h \times h} WhhRh×h和偏差 b h ∈ R 1 × h \boldsymbol{b}_h \in \mathbb{R}^{1 \times h} bhR1×h,以及输出层的权重 W h q ∈ R h × q \boldsymbol{W}_{hq} \in \mathbb{R}^{h \times q} WhqRh×q和偏差 b q ∈ R 1 × q \boldsymbol{b}_q \in \mathbb{R}^{1 \times q} bqR1×q。值得一提的是,即便在不同时间步,循环神经网络也始终使用这些模型参数。因此,循环神经网络模型参数的数量不随时间步的增加而增长。

图6.1展示了循环神经网络在3个相邻时间步的计算逻辑。在时间步 t t t,隐藏状态的计算可以看成是将输入 X t \boldsymbol{X}_t Xt和前一时间步隐藏状态 H t − 1 \boldsymbol{H}_{t-1} Ht1连结后输入一个激活函数为 ϕ \phi ϕ的全连接层。该全连接层的输出就是当前时间步的隐藏状态 H t \boldsymbol{H}_t Ht,且模型参数为 W x h \boldsymbol{W}_{xh} Wxh W h h \boldsymbol{W}_{hh} Whh的连结,偏差为 b h \boldsymbol{b}_h bh。当前时间步 t t t的隐藏状态 H t \boldsymbol{H}_t Ht将参与下一个时间步 t + 1 t+1 t+1的隐藏状态 H t + 1 \boldsymbol{H}_{t+1} Ht+1的计算,并输入到当前时间步的全连接输出层。
在这里插入图片描述

使用PyTorch实现RNN

我们将使用周杰伦从第一张专辑《Jay》到第十张专辑《跨时代》中的歌词数据集上训练一个模型来进行歌词创作。首先,我们读取周杰伦专辑歌词数据集。

import time
import math
import numpy as np
import torch
from torch import nn, optim
import torch.nn.functional as F

import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

(corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()

d2lzh_pytorch为封装好的一个常用方法的python文件

定义模型

PyTorch中的nn模块提供了循环神经网络的实现。下面构造一个含单隐藏层、隐藏单元个数为256的循环神经网络层rnn_layer

num_hiddens = 256
# rnn_layer = nn.LSTM(input_size=vocab_size, hidden_size=num_hiddens) # 已测试
rnn_layer = nn.RNN(input_size=vocab_size, hidden_size=num_hiddens)

这里rnn_layer的输入形状为(时间步数, 批量大小, 输入个数)。其中输入个数即one-hot向量长度(词典大小)。此外,rnn_layer作为nn.RNN实例,在前向计算后会分别返回输出和隐藏状态h,其中输出指的是隐藏层在各个时间步上计算并输出的隐藏状态,它们通常作为后续输出层的输入。需要强调的是,该“输出”本身并不涉及输出层计算,形状为(时间步数, 批量大小, 隐藏单元个数)。而nn.RNN实例在前向计算返回的隐藏状态指的是隐藏层在最后时间步的隐藏状态:当隐藏层有多层时,每一层的隐藏状态都会记录在该变量中;对于像长短期记忆(LSTM),隐藏状态是一个元组(h, c),即hidden state和cell state。我们会在本章的后面介绍长短期记忆和深度循环神经网络。关于循环神经网络(以LSTM为例)的输出,可以参考下图(图片来源)。
在这里插入图片描述
来看看我们的例子,输出形状为(时间步数, 批量大小, 隐藏单元个数),隐藏状态h的形状为(层数, 批量大小, 隐藏单元个数)。

num_steps = 35
batch_size = 2
state = None
X = torch.rand(num_steps, batch_size, vocab_size)
Y, state_new = rnn_layer(X, state)
print(Y.shape, len(state_new), state_new[0].shape)

输出:

torch.Size([35, 2, 256]) 1 torch.Size([2, 256])

如果rnn_layernn.LSTM实例,那么上面的输出是什么?

接下来我们继承Module类来定义一个完整的循环神经网络。它首先将输入数据使用one-hot向量表示后输入到rnn_layer中,然后使用全连接输出层得到输出。输出个数等于词典大小vocab_size

# 本类已保存在d2lzh_pytorch包中方便以后使用
class RNNModel(nn.Module):
    def __init__(self, rnn_layer, vocab_size):
        super(RNNModel, self).__init__()
        self.rnn = rnn_layer
        self.hidden_size = rnn_layer.hidden_size * (2 if rnn_layer.bidirectional else 1) 
        self.vocab_size = vocab_size
        self.dense = nn.Linear(self.hidden_size, vocab_size)
        self.state = None

    def forward(self, inputs, state): # inputs: (batch, seq_len)
        # 获取one-hot向量表示
        X = d2l.to_onehot(inputs, self.vocab_size) # X是个list
        Y, self.state = self.rnn(torch.stack(X), state)
        # 全连接层会首先将Y的形状变成(num_steps * batch_size, num_hiddens),它的输出
        # 形状为(num_steps * batch_size, vocab_size)
        output = self.dense(Y.view(-1, Y.shape[-1]))
        return output, self.state

训练模型

下面定义一个预测函数。这里的实现区别在于前向计算和初始化隐藏状态的函数接口。

# 本函数已保存在d2lzh_pytorch包中方便以后使用
def predict_rnn_pytorch(prefix, num_chars, model, vocab_size, device, idx_to_char,
                      char_to_idx):
    state = None
    output = [char_to_idx[prefix[0]]] # output会记录prefix加上输出
    for t in range(num_chars + len(prefix) - 1):
        X = torch.tensor([output[-1]], device=device).view(1, 1)
        if state is not None:
            if isinstance(state, tuple): # LSTM, state:(h, c)  
                state = (state[0].to(device), state[1].to(device))
            else:   
                state = state.to(device)
            
        (Y, state) = model(X, state)
        if t < len(prefix) - 1:
            output.append(char_to_idx[prefix[t + 1]])
        else:
            output.append(int(Y.argmax(dim=1).item()))
    return ''.join([idx_to_char[i] for i in output])

让我们使用权重为随机值的模型来预测一次。

model = RNNModel(rnn_layer, vocab_size).to(device)
predict_rnn_pytorch('分开', 10, model, vocab_size, device, idx_to_char, char_to_idx)

输出:

'分开戏想暖迎凉想征凉征征'

接下来实现训练函数,这里将使用了相邻采样来读取数据。

在训练中我们需要每次随机读取小批量样本和标签。与之前章节的实验数据不同的是,时序数据的一个样本通常包含连续的字符。假设时间步数为5,样本序列为5个字符,即“想”“要”“有”“直”“升”。该样本的标签序列为这些字符分别在训练集中的下一个字符,即“要”“有”“直”“升”“机”。我们有两种方式对时序数据进行采样,分别是随机采样和相邻采样。

# 本函数已保存在d2lzh_pytorch包中方便以后使用
def train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                                corpus_indices, idx_to_char, char_to_idx,
                                num_epochs, num_steps, lr, clipping_theta,
                                batch_size, pred_period, pred_len, prefixes):
    loss = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    model.to(device)
    state = None
    for epoch in range(num_epochs):
        l_sum, n, start = 0.0, 0, time.time()
        data_iter = d2l.data_iter_consecutive(corpus_indices, batch_size, num_steps, device) # 相邻采样
        for X, Y in data_iter:
            if state is not None:
                # 使用detach函数从计算图分离隐藏状态, 这是为了
                # 使模型参数的梯度计算只依赖一次迭代读取的小批量序列(防止梯度计算开销太大)
                if isinstance (state, tuple): # LSTM, state:(h, c)  
                    state = (state[0].detach(), state[1].detach())
                else:   
                    state = state.detach()
    
            (output, state) = model(X, state) # output: 形状为(num_steps * batch_size, vocab_size)
            
            # Y的形状是(batch_size, num_steps),转置后再变成长度为
            # batch * num_steps 的向量,这样跟输出的行一一对应
            y = torch.transpose(Y, 0, 1).contiguous().view(-1)
            l = loss(output, y.long())
            
            optimizer.zero_grad()
            l.backward()
            # 梯度裁剪
            d2l.grad_clipping(model.parameters(), clipping_theta, device)
            optimizer.step()
            l_sum += l.item() * y.shape[0]
            n += y.shape[0]
        
        try:
            perplexity = math.exp(l_sum / n)
        except OverflowError:
            perplexity = float('inf')
        if (epoch + 1) % pred_period == 0:
            print('epoch %d, perplexity %f, time %.2f sec' % (
                epoch + 1, perplexity, time.time() - start))
            for prefix in prefixes:
                print(' -', predict_rnn_pytorch(
                    prefix, pred_len, model, vocab_size, device, idx_to_char,
                    char_to_idx))

现在我们可以训练模型了。首先,设置模型超参数。我们将根据前缀“分开”和“不分开”分别创作长度为50个字符(不考虑前缀长度)的一段歌词。我们每过50个迭代周期便根据当前训练的模型创作一段歌词。

num_epochs, batch_size, lr, clipping_theta = 250, 32, 1e-3, 1e-2 # 注意这里的学习率设置
pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']
train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                            corpus_indices, idx_to_char, char_to_idx,
                            num_epochs, num_steps, lr, clipping_theta,
                            batch_size, pred_period, pred_len, prefixes)

输出:

epoch 50, perplexity 10.658418, time 0.05 sec
 - 分开始我妈  想要你 我不多 让我心到的 我妈妈 我不能再想 我不多再想 我不要再想 我不多再想 我不要
 - 不分开 我想要你不你 我 你不要 让我心到的 我妈人 可爱女人 坏坏的让我疯狂的可爱女人 坏坏的让我疯狂的
epoch 100, perplexity 1.308539, time 0.05 sec
 - 分开不会痛 不要 你在黑色幽默 开始了美丽全脸的梦滴 闪烁成回忆 伤人的美丽 你的完美主义 太彻底 让我
 - 不分开不是我不要再想你 我不能这样牵着你的手不放开 爱可不可以简简单单没有伤害 你 靠着我的肩膀 你 在我
epoch 150, perplexity 1.070370, time 0.05 sec
 - 分开不能去河南嵩山 学少林跟武当 快使用双截棍 哼哼哈兮 快使用双截棍 哼哼哈兮 习武之人切记 仁者无敌
 - 不分开 在我会想通 是谁开没有全有开始 他心今天 一切人看 我 一口令秋软语的姑娘缓缓走过外滩 消失的 旧
epoch 200, perplexity 1.034663, time 0.05 sec
 - 分开不能去吗周杰伦 才离 没要你在一场悲剧 我的完美主义 太彻底 分手的话像语言暴力 我已无能为力再提起
 - 不分开 让我面到你 爱情来的太快就像龙卷风 离不开暴风圈来不及逃 我不能再想 我不能再想 我不 我不 我不
epoch 250, perplexity 1.021437, time 0.05 sec
 - 分开 我我外的家边 你知道这 我爱不看的太  我想一个又重来不以 迷已文一只剩下回忆 让我叫带你 你你的
 - 不分开 我我想想和 是你听没不  我不能不想  不知不觉 你已经离开我 不知不觉 我跟了这节奏 后知后觉 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值