齐次线性方程组
什么是齐次线性方程组?
==> 每一个方程等号右边的数都为 0
举例 三元齐次线性方程组 ==>
执行高斯-约旦消元法 ==>
对于齐次线性方程组来说 是一定有解的。
因为,对于齐次线性方程组来说,方程等式都为0,那至少有一个解 ⇒ 0
==> 所以是有唯一解 0 ,还是无数解?
根据之前的总结判断 ==> 系数矩阵非零行个数 与 未知数个数
==> 2 < 3 ==> 无数解
对于齐次线性方程组来说,最后一列肯定永远为零 ==> 不存在矛盾 ==> 有解
因为 在 齐次线性方程组 所构建的 增广矩阵中,结果矩阵都为0,所以可以不用构建结果矩阵,直接对系数矩阵进行操作。
只要有一个方程组,等号右边的数不为0 就称为 非齐次线性方程组。