线性代数学习笔记(二十八)——齐次方程组的解

本篇笔记通过回顾线性方程组解的判定,引出并讨论了齐次线性方程组解的情况;然后通过上一章节的定理总结出几个推论并做了一定的讨论;最后通过求齐次线性方程组的例子来判断向量组的相关性,同时求解一组相关系数。

1 回顾

前面讨论的线性方程组,其矩阵方程形式为 A X = B AX=B AX=B向量方程形式为 x 1 α 1 + x 2 α 2 + ⋯ + x n α n = β x_1\alpha_1+x_2\alpha_2+\cdots+x_n\alpha_n=\beta x1α1+x2α2++xnαn=β,该方程组有解的判定为,

{ r ( A ) = r ( A ‾ ) 有解 { = n 有唯一解 < n 有无穷多解 r ( A ) ≠ r ( A ‾ ) 无解 \begin{cases}r(A)=r(\overline{A})&有解\begin{cases}=n&有唯一解\\<n&有无穷多解\end{cases}\\r(A)\quad{\neq}{\quad}r(\overline{A})&无解\end{cases} r(A)=r(A)r(A)=r(A)有解{ =n<n有唯一解有无穷多解无解

2 齐次线性方程组

常数项全为零的线性方程组称为齐次线性方程组,如
{ x 1 + x 2 + x 3 = 0 x 1 − x 2 − x 3 = 0 2 x 1 + 4 x 3 = 0 \begin{cases}x_1&+x_2&+x_3=0\\x_1&-x_2&-x_3=0\\2x_1&&+4x_3=0\end{cases} x1x12x1+x2x2+x3=0x3=0+4x3=0

因为 x 1 = 0 , x 2 = 0 , ⋯   , x n = 0 x_1=0,x_2=0,\cdots,x_n=0 x1=0,x2=0,,xn=0恒成立,
所以,齐次线性方程组一定有解,至少有零解

从方程组有解的判定来看,其系数矩阵,
A = [ 1 1 1 1 − 1 − 1 2 0 4 ] A=\left[\begin{array}{ccc}1&1&1\\1&-1&-1\\2&0&4\end{array}\right] A= 112110114
所以, r ( A ) = 3 r(A)=3 r(A)=3

而其增广矩阵,
A ‾ = [ 1 1 1 0 1 − 1 − 1 0 2 0 4 0 ] {\overline{A}=}\left[\begin{array}{ccc:c}1&1&1&0\\1&-1&-1&0\\2&0&4&0\end{array}\right] A= 112110

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值