Burnside定理 && Polya定理

1 篇文章 0 订阅
1 篇文章 0 订阅

学数论的上午注定是自闭的。

原作: By Lucky_Glass

Burnside定理

主要是自己理解,简单的地方不多赘述。

置换

( f ⋅ g ) ( x ) = f ( g ( x ) ) (f\cdot g)(x)=f(g(x)) (fg)(x)=f(g(x))

恒等置换

单位元: ι \iota ι
逆函数: f ⋅ f − 1 = ι f \cdot f^{-1} = \iota ff1=ι

置换群

令定义在 1 − n 1-n 1n上的所有置换组成的集合为 S n S_n Sn ,对于它的一个非空子集 G G G ,如果它满足:

  1. 对合成运算的封闭性: 对于任意 f , g ∈ G f,g\in G f,gG,满足 f ⋅ g ∈ G f\cdot g\in G fgG
  2. 存在单位元: ι ∈ G \iota \in G ιG
  3. 对逆元的封闭性: f ∈ G f\in G fG,则 f − 1 ∈ G f^{-1}\in G f1G

则称其为置换群。对于任意置换群,满足消去律,即若 f , g , h ∈ G f,g,h\in G f,g,hG,且 f ⋅ g = f ⋅ h f\cdot g=f\cdot h fg=fh,则 g = h g=h g=h

着色

n n n边形的着色情况表示为 c = ( c 1 , c 2 , . . . , c n ) c=(c1,c2,...,cn) c=(c1,c2,...,cn),其中 c i ci ci表示 i i i点的颜色

现在来定义置换对着色的作用:对于 G G G中的一个置换 f f f和一个着色方案 c c c,置换 f f f c c c的影响作用结果为 f ⋅ c f\cdot c fc,而其满足 ( f ⋅ c ) ( x ) = c ( f − 1 ( x ) ) (f\cdot c)(x)=c(f^{-1}(x)) (fc)(x)=c(f1(x)) x x x表示 x x x位置的颜色。

举个例子,
f = ( 1 2 3 2 3 1 ) , c = ( 2 , 1 , 3 ) f=\begin{pmatrix} 1&2&3\\ 2&3&1\\ \end{pmatrix},c=(2,1,3) f=(122331),c=(2,1,3)

c ( 3 ) = 2 c(3)=2 c(3)=2,这是置换后的结果

f − 1 = ( 1 2 3 3 1 2 ) , c = ( 2 , 1 , 3 ) f^{-1}=\begin{pmatrix} 1&2&3\\ 3&1&2\\ \end{pmatrix},c=(2,1,3) f1=(132132),c=(2,1,3)
c ( 3 ) = 2 c(3)=2 c(3)=2,发现就是将 f − 1 ( x ) f^{-1}(x) f1(x)上对应 x x x号当前位置在 c c c中的颜色,这里可以自行理解

前置定理

等价着色

在置换群 G G G中,若 c 1 = c 2 c_1=c_2 c1=c2,则存在 f ∈ G ⋅ c 1 = c 2 f\in G \cdot c_1=c_2 fGc1=c2

一些定义

然后我们给出一些定义。

  1. G G G为置换群,则 G ( c ) = { f ∣ f ∈ G   & &   f ⋅ c = c } G(c)=\{f|f\in G\ \&\&\ f\cdot c=c\} G(c)={ffG && fc=c},即 G ( c ) G(c) G(c)为使 c c c不变的置换集
  2. 定义 C C C为所有可行着色方案组成的集合
  3. C ( f ) C(f) C(f) f f f置换后不变的着色方案 c c c
  4. E ( c ) E(c) E(c)为关于 G G G和着色方案 c c c等价的方案集合
  5. N ( G , C ) N(G,C) N(G,C)表示在 G G G的作用下 C C C中不等价的方案数

推导

引理1

如果 f f f使 c c c不变,那么 f − 1 f^{-1} f1也使 c c c不变
ι ⋅ c = c \iota\cdot c=c ιc=c
( f ⋅ f − 1 ) ⋅ c = c (f\cdot f^{-1})\cdot c=c (ff1)c=c
f − 1 ⋅ ( f ⋅ c ) = c f^{-1}\cdot (f\cdot c)=c f1(fc)=c
f − 1 ⋅ c = c f^{-1}\cdot c=c f1c=c

  • 单位元: ι ∈ G ( c ) \iota \in G(c) ιG(c)
  • 对合成运算的封闭:这很显然了
  • 对逆函数的封闭性:这也很显然了
定理1

f , g ∈ G f,g\in G f,gG满足 f ⋅ c = g ⋅ c f\cdot c=g\cdot c fc=gc,当且仅当 f − 1 ⋅ g ∈ G ( c ) f^{-1}\cdot g\in G(c) f1gG(c)

( f − 1 ⋅ g ) ⋅ c = f − 1 ⋅ ( g ⋅ c ) (f^{-1}\cdot g)\cdot c=f^{-1}\cdot (g\cdot c) (f1g)c=f1(gc)
= f − 1 ⋅ ( f ⋅ c ) = c =f^{-1}\cdot (f\cdot c)=c =f1(fc)=c

f ⋅ c = f ⋅ [ ( f − 1 ⋅ g ) ⋅ c ] = g ⋅ c f\cdot c=f\cdot[(f^{-1}\cdot g)\cdot c]=g\cdot c fc=f[(f1g)c]=gc
综上, f ⋅ c = g ⋅ c ⇔ f − 1 ⋅ g ∈ G ( c ) f\cdot c=g\cdot c \Leftrightarrow f^{-1}\cdot g\in G(c) fc=gcf1gG(c)

定理2(轨道-稳定集定理)

为了便于阅读,再把定义挂一遍

  1. G G G为置换群,则 G ( c ) = { f ∣ f ∈ G   & &   f ⋅ c = c } G(c)=\{f|f\in G\ \&\&\ f\cdot c=c\} G(c)={ffG && fc=c},即 G ( c ) G(c) G(c)为使 c c c不变的置换集
  2. 定义 C C C为所有可行着色方案组成的集合
  3. C ( f ) C(f) C(f) f f f置换后不变的着色方案 c c c
  4. E ( c ) E(c) E(c)为关于 G G G和着色方案 c c c等价的方案集合
  5. N ( G , C ) N(G,C) N(G,C)表示在 G G G的作用下 C C C中不等价的方案数

∣ E ( c ) ∣ = ∣ G ∣ ∣ G ( c ) ∣ |E(c)|=\frac{|G|}{|G(c)|} E(c)=G(c)G

证明:
f ⋅ c = g ⋅ c f\cdot c=g\cdot c fc=gc,可得到 f − 1 ⋅ c ∈ G ( c ) f^{-1}\cdot c\in G(c) f1cG(c)
因为满足消去律,所以这样的 g g g ∣ G ( c ) ∣ |G(c)| G(c)
对于每个 f f f,都有 ∣ G ( c ) ∣ |G(c)| G(c)置换关于 c c c和它等价,所以 ∣ E ( c ) ∣ = ∣ G ∣ ∣ G ( c ) ∣ |E(c)|=\frac{|G|}{|G(c)|} E(c)=G(c)G

定理3(Burnside)

G G G为置换群, C C C满足对于任意 f f f c c c f ⋅ c ∈ C f\cdot c\in C fcC,那么在置换群 G G G的作用下, C C C中不等价的着色方案数为:
N ( G , C ) = 1 ∣ G ∣ ∑ f ∈ G ∣ C ( f ) ∣ N(G,C)=\frac{1}{|G|}\sum_{f\in G}|C(f)| N(G,C)=G1fGC(f)

证明: 考虑对 f ⋅ c = c f\cdot c=c fc=c的二元组 ( f , c ) (f,c) (f,c)进行计数。

如果枚举 f f f,则为 ∑ f ∈ G ∣ C ( f ) ∣ \sum_{f\in G}|C(f)| fGC(f)
如果枚举 c c c, 则为 ∑ c ∈ C ∣ G ( c ) ∣ \sum_{c\in C}|G(c)| cCG(c)
加上定理2的转换形式,可以得到:
∑ f ∈ G ∣ C ( f ) ∣ = ∑ c ∈ C ∣ G ( c ) ∣ = ∑ c ∈ C ∣ G ∣ ∣ E ( c ) ∣ \sum_{f\in G}|C(f)|=\sum_{c\in C}|G(c)|=\sum_{c\in C}\frac{|G|}{|E(c)|} fGC(f)=cCG(c)=cCE(c)G
所以可得到
1 ∣ G ∣ ∑ f ∈ G ∣ C ( f ) ∣ = ∑ c ∈ C 1 ∣ E ( c ) ∣ \frac{1}{|G|}\sum_{f\in G}|C(f)|=\sum_{c\in C}\frac{1}{|E(c)|} G1fGC(f)=cCE(c)1

考虑右边式子的意义:对于等价的每个着色 f f f,贡献为 1 ∣ E ( c ) ∣ \frac{1}{|E(c)|} E(c)1,那么等价的着色集合的贡献为 1 1 1,那么该式子就为不等价的着色方案数。

个人感觉Burnside推导过程难度并不大,不太懂的地方可以举例理解一下。

Polya定理

讲完Burnside, 趁热打铁讲一讲 Polya, Polya其实就是将Bornside的公式转换为另一种形式,更方便题目求解。

循环

引入一个新的概念:循环。
我们发现,一个置换可以将 n n n个数划分为几个循环。我们将划分出的循环的个数定义为循环节

讲解

这里给出一个例子吧(因为有图方便盗了

给一个2*2的方阵的每个格子涂上红色或者绿色,如果两种涂色方案在旋转之后相同,视为同一种,共有多少种不同的涂色方案?

我们把经过旋转后相同的涂色方案视为一个等价类,共有6个等价类

在这里插入图片描述
显然置换集合包括4种置换:不转,转 90 ° 90° 90°,转 180 ° 180° 180°和转 270 ° 270° 270°
我们给格子标上号,左上角格子标为 1 1 1,顺时针依次是 2 , 3 , 4 2,3,4 2,3,4,就能写出 4 4 4种置换对应的排列
我们定不转为置换 f 0 f0 f0,顺时针转 90 ° 90° 90°为置换 f 1 f1 f1,顺时针转 180 ° 180° 180°为置换 f 2 f2 f2,顺时针转 270 ° 270° 270°为置换 f 3 f3 f3
在这里插入图片描述
f i fi fi C ( f i ) C(fi) C(fi),可得到:
f 0 = [ 1 ] − [ 16 ] f_0=[1]-[16] f0=[1][16]
f 1 = [ 1 ] [ 2 ] f_1=[1][2] f1=[1][2]
f 2 = [ 1 ] [ 2 ] [ 11 ] [ 12 ] f_2=[1][2][11][12] f2=[1][2][11][12]
f 3 = [ 1 ] [ 2 ] f_3=[1][2] f3=[1][2]

所以 N = ( f 0 + f 1 + f 2 + f 3 ) / 4 = ( 16 + 2 + 4 + 2 ) / 4 = 6 N=(f_0+f_1+f_2+f_3)/4=(16+2+4+2)/4=6 N=(f0+f1+f2+f3)/4=(16+2+4+2)/4=6

然而,怎样求 C ( f ) C(f) C(f)呢?
我们考虑f分解出的循环,例如:上一个问题中, f 0 f_0 f0分解出的循环为 ( 1 ) ( 2 ) ( 3 ) ( 4 ) (1)(2)(3)(4) (1)(2)(3)(4) f 1 f_1 f1分解出的循环为 ( 1 , 2 , 3 , 4 ) (1,2,3,4) (1,2,3,4)。因为 f f f可以看成是每个分解出的循环自行进行置换,所以对于 f f f分解出的每个循环,应该在置换后相同。不同循环互相独立。例如:上一个问题中, f 0 f_0 f0分解出 4 4 4个循环,所以 4 4 4个循环每
个循环只能有一个颜色,不同循环互相独立,所以共有 2 4 = 16 2^4=16 24=16个不动点; f 1 f_1 f1分解出 1 1 1个循环,所以这个循环只能有一个颜色,所以共有 2 1 = 2 2^1=2 21=2个不动点。

如果置换 f f f分解为 m ( f ) m(f) m(f)个循环的乘积形式,那么每个循环内相当于涂上同样的颜色。假设涂 k k k种颜色,则有 C ( f ) = k m ( f ) C(f) = k^{m(f)} C(f)=km(f)。将这个式子代入Burnside引理,得到Polya定理:等价类的个数等于所有置换 f f f k m ( f ) k^{m(f)} km(f)的平均数

式子表达为:
N ( G , C ) = 1 ∣ G ∣ ∑ f ∈ G k m ( f ) N(G,C)=\frac{1}{|G|}\sum_{f\in G}k^{m(f)} N(G,C)=G1fGkm(f)

Polya与母函数

用一道题来引入:
一家项链公司生产手镯。 n n n颗珠子形成一个环,用 m m m种颜色给 n n n颗珠子染色,就得到了各种各样的手镯。但是,经过旋转和翻转使之吻合的算同一种方案。
例如,当用 2 2 2种颜色对 5 5 5颗珠子进行染色的方案数为 8 8 8,如下图所示。

在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值