可以实现基于朴素贝叶斯分类器的手写数字识别,具体步骤如下:
1. 读取MNIST数据集,可以使用MATLAB自带的load函数:
```
load('mnist_all.mat');
```
2. 将数据集分为训练集和测试集,可以按照80:20的比例进行划分:
```
train_ratio = 0.8;
train_num = round(train_ratio*size(train0,1));
train_x = [train0(1:train_num,:);train1(1:train_num,:);train2(1:train_num,:);train3(1:train_num,:);train4(1:train_num,:);train5(1:train_num,:);train6(1:train_num,:);train7(1:train_num,:);train8(1:train_num,:);train9(1:train_num,:)];
train_y = [zeros(train_num,1);ones(train_num,1);2*ones(train_num,1);3*ones(train_num,1);4*ones(train_num,1);5*ones(train_num,1);6*ones(train_num,1);7*ones(train_num,1);8*ones(train_num,1);9*ones(train_num,1)];
test_x = [test0;test1;test2;test3;test4;test5;test6;test7;test8;test9];
test_y = [zeros(size(test0,1),1);ones(size(test1,1),1);2*ones(size(test2,1),1);3*ones(size(test3,1),1);4*ones(size(test4,1),1);5*ones(size(test5,1),1);6*ones(size(test6,1),1);7*ones(size(test7,1),1);8*ones(size(test8,1),1);9*ones(size(test9,1),1)];
```
3. 对训练集中的每个数字进行特征提取,可以使用像素值作为特征:
```
train_features = double(train_x)/255;
```
4. 训练朴素贝叶斯分类器,可以使用MATLAB自带的fitcnb函数:
```
nb = fitcnb(train_features,train_y);
```
5. 对测试集中的每个数字进行特征提取,并使用训练好的朴素贝叶斯分类器进行分类:
```
test_features = double(test_x)/255;
test_pred = predict(nb,test_features);
```
6. 计算分类准确率:
```
accuracy = sum(test_pred==test_y)/length(test_y);
```
完整代码如下:
```
load('mnist_all.mat');
train_ratio = 0.8;
train_num = round(train_ratio*size(train0,1));
train_x = [train0(1:train_num,:);train1(1:train_num,:);train2(1:train_num,:);train3(1:train_num,:);train4(1:train_num,:);train5(1:train_num,:);train6(1:train_num,:);train7(1:train_num,:);train8(1:train_num,:);train9(1:train_num,:)];
train_y = [zeros(train_num,1);ones(train_num,1);2*ones(train_num,1);3*ones(train_num,1);4*ones(train_num,1);5*ones(train_num,1);6*ones(train_num,1);7*ones(train_num,1);8*ones(train_num,1);9*ones(train_num,1)];
test_x = [test0;test1;test2;test3;test4;test5;test6;test7;test8;test9];
test_y = [zeros(size(test0,1),1);ones(size(test1,1),1);2*ones(size(test2,1),1);3*ones(size(test3,1),1);4*ones(size(test4,1),1);5*ones(size(test5,1),1);6*ones(size(test6,1),1);7*ones(size(test7,1),1);8*ones(size(test8,1),1);9*ones(size(test9,1),1)];
train_features = double(train_x)/255;
nb = fitcnb(train_features,train_y);
test_features = double(test_x)/255;
test_pred = predict(nb,test_features);
accuracy = sum(test_pred==test_y)/length(test_y);
disp(['Accuracy: ',num2str(accuracy)]);
```