好久没写博客了,话不多说,进入主题。
1、贝叶斯方法
关于贝叶斯方法,刘未鹏的文章一出,感觉不再需要其他文章了。读者可以阅读以下http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/
2、训练数据集
经典的手写数字图像训练和测试集来自http://yann.lecun.com/exdb/mnist/。读者可以下载。
3、具体实现过程
3.1 导入数据集
上面提到的数据由于编码问题,需要自己写导入方法,如果你也是用python的话,有现成的模板可以使用。推荐一个GitHub的下载地址
3.2 学习并生成图片
对于一张图像,例如数据集中28*28的图像,每个像素点像素值为0~255。这样一来,经过抽象,一张图像可以分为图像本身数据信息images和它所表示的意义label。其中,images是一个28*28=784维的特征集,且每个维度的特征有256个取值(0~255的像素值)labe