TensorFlow的MNIST手写数字分类问题 基础篇


前言

就像我们学习编程的第一步往往是学习敲出 "Hello World" 一样,机器学习的入门就要知道 MNIST.

MNIST 是一个入门级的计算机视觉数据集,它包含各种手写数字图片,接下来让我们看一下实现过程吧。


导入MNIST 数据集

mport input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

下载下来的数据集被分成两部分:60000 行的训练数据集 (mnist.train) 和 10000 行的测试数据集

2.读入数据

代码如下(示例):

data = pd.read_csv(
    'https://labfile.oss.aliyuncs.com/courses/1283/adult.data.csv')
print(data.head())

计算交叉熵 

x = tf.placeholder("float", [None, 784])

 张量来初始化 W 和 b

W = tf.Variable(tf.zeros([784,10]))

b = tf.Variable(tf.zeros([10]))

使用softmax回归模型

y = tf.nn.softmax(tf.matmul(x,W) + b)

计算交叉熵

y_ = tf.placeholder("float", [None,10])
cross_entropy = -tf.reduce_sum(y_*tf.log(y))

实现反向传播算法和梯度下降 

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

余下的代码如下 

init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})

 

这个手写代码量少实现简单,但是最终结果准确率大约是 91%,准确率不够高。


总结

本篇文章适用于对tensorFlow 都不太了解的新手

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

w27711766

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值