前言
就像我们学习编程的第一步往往是学习敲出 "Hello World" 一样,机器学习的入门就要知道 MNIST.
MNIST 是一个入门级的计算机视觉数据集,它包含各种手写数字图片,接下来让我们看一下实现过程吧。
导入MNIST 数据集
mport input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
下载下来的数据集被分成两部分:60000 行的训练数据集 (mnist.train) 和 10000 行的测试数据集
2.读入数据
代码如下(示例):
data = pd.read_csv(
'https://labfile.oss.aliyuncs.com/courses/1283/adult.data.csv')
print(data.head())
计算交叉熵
x = tf.placeholder("float", [None, 784])
张量来初始化 W 和 b
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
使用softmax回归模型
y = tf.nn.softmax(tf.matmul(x,W) + b)
计算交叉熵
y_ = tf.placeholder("float", [None,10])
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
实现反向传播算法和梯度下降
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
余下的代码如下
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})
这个手写代码量少实现简单,但是最终结果准确率大约是 91%,准确率不够高。
总结
本篇文章适用于对tensorFlow 都不太了解的新手