学习笔记--生成函数

生成函数

定义

  一般来说,对于有限数列
a 0 , a 1 , a 2 , ⋯ a n a_0, a_1, a_2, \cdots a_n a0,a1,a2,an

  多项式
f ( x ) = ∑ k = 0 n a k x k = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n f(x) = \sum_{k = 0}^{n}a_kx^k = a_0 + a_1 x + a_2 x ^ 2 + \cdots + a_nx^n f(x)=k=0nakxk=a0+a1x+a2x2++anxn

  称为数列 { a n } \lbrace a_n \rbrace {an} 的生成函数。例如:
f ( x ) = ( 1 + x ) n = C n 0 + C n 1 x + C n 2 x 2 + ⋯ + C n n x n f(x) = (1 + x)^n = C_n^0 + C_n^1x +C_n^2 x^2 + \cdots + C_n^n x^n f(x)=(1+x)n=Cn0+Cn1x+Cn2x2++Cnnxn

  就是数列:
{ C n 0 , C n 1 , C n 2 , ⋯ C n n } \lbrace C_n^0, C_n^1, C_n^2, \cdots C_n^n \rbrace {Cn0,Cn1,Cn2,Cnn}

  的生成函数。

  更一般的,对于无穷数列:
a 0 , a 1 , a 2 , ⋯ a n , ⋯ a_0, a_1, a_2, \cdots a_n, \cdots a0,a1,a2,an,

  多项式:
f ( x ) = ∑ n = 0 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + ⋯ f(x) = \sum_{n=0}^{\infty}a_nx^n = a_0 + a_1x + a_2 x^2 + \cdots f(x)=n=0anxn=a0+a1x+a2x2+

  就是无穷数列 { a n } \lbrace a_n \rbrace {an} 的生成函数,这种生成函数也叫作形式幂级数。对于形式幂级数 f ( x ) = ∑ n = 0 ∞ a n x n f(x) = \sum\limits_{n=0}^{\infty}a_nx^n f(x)=n=0anxn g ( x ) = ∑ n = 0 ∞ b n x n g(x) = \sum\limits_{n=0}^{\infty} b_nx^n g(x)=n=0bnxn 来说,我们有:
f ( x ) = g ( x ) 当 且 仅 当      a n = b n      , n = 0 , 1 , 2 , ⋯ f ( x ) ± g ( x ) = ∑ n = 0 ∞ ( a n + b n ) x n α f ( x ) = ∑ n = 0 ∞ ( α a n ) x n ( α 为 常 数 ) f ( x ) g ( x ) = ∑ n = 0 ∞ c n x n , 其 中      c k = ∑ k = 0 ∞ a k b n − k , n = 0 , 1 , 2 , ⋯ \begin{aligned} & f(x) = g(x) \quad 当且仅当 \; \; a_n = b_n \;\; ,n = 0, 1, 2, \cdots \\ & f(x) \pm g(x) = \sum_{n=0}^{\infty} (a_n + b_n)x^n \\ & \alpha f(x) = \sum_{n=0}^{\infty} (\alpha a_n)x^n \quad (\alpha 为常数) \\ & f(x)g(x) = \sum_{n=0}^{\infty}c_nx^n,其中 \;\; c_k = \sum_{k=0}^{\infty} a_kb_{n-k},n=0, 1, 2,\cdots \end{aligned} f(x)=g(x)an=bn,n=0,1,2,f(x)±g(x)=n=0(an+bn)xnαf(x)=n=0(αan)xn(α)f(x)g(x)=n=0cnxnck=k=0akbnkn=0,1,2,

一些公式

  在利用生成函数解题的时候,需要用到以下一些公式:
( a + b ) n = ∑ i = 0 n C n i a n − i b i 1 1 − x = ∑ n = 0 n x n ( 1 − x ) − k = ∑ n = 0 ∞ C n + k − 1 k − 1 x n \begin{aligned} & (a +b)^n = \sum_{i=0}^{n}C_n^ia^{n-i}b^i \\ & \frac{1}{1-x} = \sum_{n=0}^n x^n \\ & (1-x)^{-k} = \sum_{n = 0}^{\infty} C_{n+k-1}^{k-1}x^n \end{aligned} (a+b)n=i=0nCnianibi1x1=n=0nxn(1x)k=n=0Cn+k1k1xn
  注:第三个式子可以由第二个式子两边同时求 k - 1 阶导得到。

一个定理

  设 p ( x ) p(x) p(x) q ( x ) q(x) q(x) 是关于 x x x 的实多项式,且 deg ⁡ p ( x ) < deg ⁡ q ( x ) \deg p(x) < \deg q(x) degp(x)<degq(x),多项式 q ( x ) q(x) q(x) k k k 重实根 α \alpha α,即 q ( x ) = ( x − α ) k q 1 ( x ) , q 1 ( α ) ≠ 0 q(x) = (x-\alpha)^k q_1(x),q_1(\alpha) \neq 0 q(x)=(xα)kq1(x)q1(α)=0。则实数 λ \lambda λ 与多项式 p 1 ( x ) p_1(x) p1(x) deg ⁡ p 1 ( x ) < deg ⁡ ( x − α ) k − 1 q 1 ( x ) \deg p_1(x) < \deg (x-\alpha)^{k-1}q_1(x) degp1(x)<deg(xα)k1q1(x),成立:
p ( x ) q ( x ) = λ ( x − α ) k + p 1 ( x ) ( x − α ) k − 1 q 1 ( x ) \frac{p(x)}{q(x)} = \frac{\lambda}{(x - \alpha)^k}+\frac{p_1(x)}{(x-\alpha)^{k-1}q_1(x)} q(x)p(x)=(xα)kλ+(xα)k1q1(x)p1(x)

证明: λ = p ( α ) q ( α ) \lambda = \frac{p(\alpha)}{q(\alpha)} λ=q(α)p(α),则 x = α x = \alpha x=α 是多项式 p ( x ) − λ q 1 ( x ) p(x) - \lambda q_1(x) p(x)λq1(x) 的根,设:
p ( x ) − λ q 1 ( x ) = ( x − α ) p 1 ( x ) → p ( x ) = λ q 1 ( x ) + ( x − α ) p 1 ( x ) p(x) - \lambda q_1(x) = (x - \alpha)p_1(x) \rightarrow p(x) = \lambda q_1(x)+(x-\alpha)p_1(x) p(x)λq1(x)=(xα)p1(x)p(x)=λq1(x)+(xα)p1(x)

  就能得到:
p ( x ) q ( x ) = λ q 1 ( x ) + ( x − α ) p 1 ( x ) ( x − α ) k q 1 ( x ) = λ ( x − α ) k + p 1 ( x ) ( x − α ) k − 1 q 1 ( x ) \frac{p(x)}{q(x)} = \frac{\lambda q_1(x)+(x-\alpha)p_1(x)}{(x-\alpha)^k q_1(x)} = \frac{\lambda}{(x - \alpha)^k}+\frac{p_1(x)}{(x-\alpha)^{k-1}q_1(x)} q(x)p(x)=(xα)kq1(x)λq1(x)+(xα)p1(x)=(xα)kλ+(xα)k1q1(x)p1(x)

  证毕。

题(们)

  1. 求下列数列的通项 { a n } \lbrace a_n \rbrace {an}
      (1) a 0 = 2 , a 1 = 5 , a n + 2 = 3 a n + 1 − 2 a n , n = 0 , 1 , 2 , ⋯ a_0 = 2,a_1 = 5,a_{n+2} = 3a_{n+1} - 2a_n,n=0, 1, 2, \cdots a0=2a1=5an+2=3an+12ann=0,1,2,
      (2) a 0 = 4 , a 1 = 3 , a n + 2 = a n + 1 + 6 a n − 12 , n = 0 , 1 , 2 , ⋯ a_0 = 4,a_1 = 3,a_{n+2} = a_{n+1} + 6a_n - 12,n=0, 1, 2, \cdots a0=4a1=3an+2=an+1+6an12n=0,1,2,

  (1):

  设原数列的生成函数为 f ( x ) f(x) f(x)
f ( x ) = a 0 + a 1 x +        a 2 x 2 +    a 3 x 3 +    a 4 x 4 + ⋯ − 3 x f ( x ) = − 3 a 0 x − 3 a 1 x 2 − 3 a 2 x 3 − 3 a 3 x 4 − ⋯ 2 x 2 f ( x ) =          2 a 0 x 2 + 2 a 1 x 3 + 2 a 2 x 4 + ⋯ \begin{aligned} f(x) & = a_0 + a_1x + \;\;\; a_2x^2 + \; a_3 x ^3 + \; a_4 x ^4 + \cdots \\ -3xf(x) & = \quad -3a_0x - 3a_1x^2 - 3a_2x^3 - 3a_3 x^4 - \cdots \\ 2x^2f(x) & = \qquad \qquad \ \;\;\;2a_0x^2 + 2a_1 x^3 + 2a_2 x^4 + \cdots \end{aligned} f(x)3xf(x)2x2f(x)=a0+a1x+a2x2+a3x3+a4x4+=3a0x3a1x23a2x33a3x4= 2a0x2+2a1x3+2a2x4+
  三式相加得到:
( 1 − 3 x + 2 x 2 ) f ( x ) = ( a 0 + a 1 x − 3 a 0 x ) + ( 2 a 0 − 3 a 1 + a 2 ) x 2 + ( 2 a 0 − 3 a 1 + a 2 ) x 3 + ⋯ (1-3x+2x^2)f(x) = (a_0 + a_1x - 3a_0x) + (2a_0-3a_1+a_2)x^2 + (2a_0-3a_1+a_2)x^3 + \cdots (13x+2x2)f(x)=(a0+a1x3a0x)+(2a03a1+a2)x2+(2a03a1+a2)x3+

  又因为 a n + 2 = 3 a n + 1 − 2 a n → 2 a n − 3 a n + 1 + a n + 2 = 0 a_{n+2} = 3a_{n+1} - 2a_n \rightarrow 2a_n - 3a_{n+1} + a_{n+2} = 0 an+2=3an+12an2an3an+1+an+2=0,所以从 x 2 x^2 x2 项之后都是 0。所以:
( 1 − 3 x + 2 x 2 ) f ( x ) = ( a 0 + a 1 x − 3 a 0 x ) = ( 2 + 5 x − 6 x ) = 2 − x (1-3x+2x^2)f(x) = (a_0 + a_1x - 3a_0x) = (2+5x-6x) = 2-x (13x+2x2)f(x)=(a0+a1x3a0x)=(2+5x6x)=2x

  所以:
f ( x ) = 2 − x 1 − 3 x + 2 x 2 f(x) = \frac{2-x}{1-3x+2x^2} f(x)=13x+2x22x

  有根据上面那个定理,我们可以对这个式子进行拆分:
f ( x ) = 2 − x 1 − 3 x + 2 x 2 = 2 − x ( 2 x − 1 ) ( x − 1 ) = A ( 2 x − 1 ) + B ( x − 1 ) \begin{aligned} f(x) = & \frac{2-x}{1-3x+2x^2} = \frac{2-x}{(2x-1)(x-1)} = \frac{A}{(2x-1)} + \frac{B}{(x-1)} \end{aligned} f(x)=13x+2x22x=(2x1)(x1)2x=(2x1)A+(x1)B

  对于最后一个等号,我们将等式两边同时乘上 ( 2 x − 1 ) ( x − 1 ) (2x-1)(x-1) (2x1)(x1),得到:
2 − x = A ( x − 1 ) + B ( 2 x − 1 ) 2-x = A(x-1) + B(2x-1) 2x=A(x1)+B(2x1)

  令 x = 1 2 x = \frac 12 x=21,得:
2 − 1 2 = ( 1 2 − 1 ) A + ( 2 ⋅ 1 2 − 1 ) B → A = − 3 2 - \frac 12 = (\frac 12 - 1) A + (2\cdot\frac 12 -1)B \rightarrow A = -3 221=(211)A+(2211)BA=3

  令 x = 1 x = 1 x=1,得:
2 − 1 = ( 1 − 1 ) A + ( 2 ⋅ 1 − 1 ) B → B = 1 2 - 1 = (1 - 1)A +(2 \cdot 1 - 1)B \rightarrow B = 1 21=(11)A+(211)BB=1

  所以:
f ( x ) = A ( 2 x − 1 ) + B ( x − 1 ) = 3 1 − 2 x − 1 1 − x = 3 ∑ n = 0 ∞ ( 2 x ) n − ∑ n = 0 ∞ x n = ∑ n = 0 n ( 3 ⋅ 2 n − 1 ) x n \begin{aligned} f(x) = & \frac{A}{(2x-1)} + \frac{B}{(x-1)} \\ = & \frac{3}{1-2x}-\frac{1}{1-x} = 3\sum_{n=0}^{\infty}(2x)^n - \sum_{n=0}^{\infty}x^n = \sum_{n=0}^n (3\cdot 2^n - 1)x^n \end{aligned} f(x)==(2x1)A+(x1)B12x31x1=3n=0(2x)nn=0xn=n=0n(32n1)xn

  所以这个数列的通项就是:
a n = 3 ⋅ 2 n − 1 a_n = 3 \cdot 2^n - 1 an=32n1

  (2):

  这原数列的生成函数为 f ( x ) f(x) f(x)
6 f ( x ) = 6 a 0 + 6 a 1 x + 6 a 2 x 2 + 6 a 3 x 3 + 6 a 4 x 4 + ⋯ x f ( x ) =    a 0 x +    a 1 x 2 +      a 2 x 3 +      a 3 x 4 + ⋯ x 2 f ( x ) =    a 0 x 2 +      a 1 x 3 +      a 2 x 4 + ⋯ 12 1 − x = 12 + 12 x +    12 x 2 +    12 x 3 +      12 x 4 + ⋯ \begin{aligned} 6f(x) = & 6a_0 + 6a_1x + 6a_2x^2 + 6a_3x^3 + 6a_4x^4 + \cdots \\ xf(x) = & \quad \; \qquad a_0x + \; a_1x^2 + \;\; a_2x^3 + \;\; a_3 x^4 +\cdots \\ x^2f(x) = & \qquad \qquad \qquad \; a_0x^2 + \;\; a_1x^3 + \;\; a_2x^4 + \cdots \\ \frac{12}{1-x} = & 12 + \quad 12x + \; 12x^2 + \; 12x^3 + \;\; 12x^4 + \cdots \end{aligned} 6f(x)=xf(x)=x2f(x)=1x12=6a0+6a1x+6a2x2+6a3x3+6a4x4+a0x+a1x2+a2x3+a3x4+a0x2+a1x3+a2x4+12+12x+12x2+12x3+12x4+

  与 (1) 同理,得:
( 1 − x − 6 x 2 ) f ( x ) + 12 1 − x = 16 + 11 x f ( x ) = 11 x + 16 − 12 1 − x 1 − x − 6 x 2 = − 11 x 2 − 5 x + 4 1 − x ( 1 − 3 x ) ( 1 + 2 x ) = − 11 x 2 − 5 x + 4 ( 1 − x ) ( 1 − 3 x ) ( 1 + 2 x ) \begin{aligned} & (1-x-6x^2)f(x) + \frac{12}{1-x} = 16 + 11x\\ & f(x) = \frac{11x+16 - \frac{12}{1-x}}{1-x-6x^2} = \frac{\frac{-11x^2-5x+4}{1-x}}{(1-3x)(1+2x)} = \frac{-11x^2-5x+4}{(1-x)(1-3x)(1+2x)} \end{aligned} (1x6x2)f(x)+1x12=16+11xf(x)=1x6x211x+161x12=(13x)(1+2x)1x11x25x+4=(1x)(13x)(1+2x)11x25x+4

  还是根据那个定理:
f ( x ) = − 11 x 2 − 5 x + 4 ( 1 − x ) ( 1 − 3 x ) ( 1 + 2 x ) = A 1 − x + B 1 − 3 x + C 1 + 2 x f(x) = \frac{-11x^2-5x+4}{(1-x)(1-3x)(1+2x)} = \frac{A}{1-x} + \frac{B}{1-3x} + \frac{C}{1+2x} f(x)=(1x)(13x)(1+2x)11x25x+4=1xA+13xB+1+2xC

  还是和 (1) 同理: A = 2 , B = C = 1 A = 2,B = C = 1 A=2B=C=1,所以:
f ( x ) = 2 1 − x + 1 1 − 3 x + 1 1 + 2 x = 2 ∑ n = 0 ∞ x n + ∑ n = 0 ∞ ( 3 x ) n + ∑ n = 0 ∞ ( − 2 x ) n = ∑ n = 0 ∞ [ 2 + 3 n + ( − 2 ) n ] x n \begin{aligned} f(x) = & \frac{2}{1-x} + \frac{1}{1-3x} + \frac{1}{1+2x} \\ = & 2\sum_{n=0}^{\infty}x^n + \sum_{n=0}^{\infty}(3x)^n + \sum_{n=0}^{\infty}(-2x)^n = \sum_{n=0}^{\infty} [2 + 3^n + (-2)^n]x^n \end{aligned} f(x)==1x2+13x1+1+2x12n=0xn+n=0(3x)n+n=0(2x)n=n=0[2+3n+(2)n]xn

  所以原数列的通项就是:
a n = 2 + 3 n + ( − 2 ) n a_n = 2 + 3^n + (-2)^n an=2+3n+(2)n


  1. 证明: ∑ k = 0 n ( C n k ) 2 ( 1 + x ) 2 n − 2 k ( 1 − x ) 2 k \sum\limits_{k=0}^n (C_n^k)^2(1+x)^{2n-2k}(1-x)^{2k} k=0n(Cnk)2(1+x)2n2k(1x)2k 的展开式中 x x x 的奇数次幂不出现。

  我们可以构造一个式子:
[ y + ( 1 + x ) 2 ] n [ y + ( 1 − x ) 2 ] n \left[ y + (1+x)^2 \right]^n\left[ y +(1-x)^2 \right]^n [y+(1+x)2]n[y+(1x)2]n

  使得这个式子的 y n y^n yn 项前面的系数为:
C n n − k [ ( 1 + x ) 2 ] n − k ⋅ C n k [ ( 1 − x ) 2 ] k = ( C n k ) 2 ( 1 + x ) 2 n − 2 k ( 1 − x ) 2 k C_n^{n-k}[(1+x)^2]^{n-k} \cdot C_n^k[(1-x)^2]^k = (C_n^k)^2(1+x)^{2n-2k}(1-x)^{2k} Cnnk[(1+x)2]nkCnk[(1x)2]k=(Cnk)2(1+x)2n2k(1x)2k

  也就是原来的式子中求和里的项。我们现在考虑把我们构造出来的式子展开:
[ y + ( 1 + x ) 2 ] n [ y + ( 1 − x ) 2 ] n = ( y + 1 + x 2 + 2 x ) n ( y + 1 + x 2 − 2 x ) n = [ ( y + 1 + x 2 ) 2 − 4 x 2 ] n \begin{aligned} & \left[ y + (1+x)^2 \right]^n\left[ y +(1-x)^2 \right]^n \\ = & (y+1+x^2+2x)^n(y+1+x^2-2x)^n \\ = & [(y+1+x^2)^2 - 4x^2]^n \end{aligned} ==[y+(1+x)2]n[y+(1x)2]n(y+1+x2+2x)n(y+1+x22x)n[(y+1+x2)24x2]n

  很显然,这里面 y n y_n yn 的系数中肯定没有 x x x 的奇数次幂。所以原式在每个求和项中都没有 x x x 的奇数次幂,所以原式没有 x x x 的奇数次幂。

  证毕。


  1. 证明:对一切正整数 n n n ∑ k = 0 [ n + 1 2 ] ( − 1 ) k C n + 1 k C 2 n − 2 k − 1 n = 1 2 n ( n + 1 ) \sum\limits_{k=0}^{\left[\frac{n+1}{2}\right]} (-1)^k C_{n+1}^k C_{2n-2k-1}^n = \frac 12 n(n + 1) k=0[2n+1](1)kCn+1kC2n2k1n=21n(n+1)

  我们考虑 ( 1 + x ) n + 1 (1+x)^{n+1} (1+x)n+1 x n − 1 x^{n-1} xn1 的系数:

  一方面: C n + 1 2 = 1 2 n ( n − 1 ) C_{n+1}^2 = \frac 12 n(n-1) Cn+12=21n(n1)

  另一方面:
( 1 + x ) n + 1 = ( 1 − x 2 ) n + 1 ( 1 − x ) n + 1 = ∑ k = 0 n + 1 C n k ( − x 2 ) k ∑ i = 0 ∞ C i + n n x i (1+x)^{n+1} = \frac{(1-x^2)^{n+1}}{(1-x)^{n+1}} = \sum_{k=0}^{n+1}C_n^k(-x^2)^k\sum_{i=0}^{\infty}C_{i+n}^nx^i (1+x)n+1=(1x)n+1(1x2)n+1=k=0n+1Cnk(x2)ki=0Ci+nnxi

  在这个式子里面,前半部分,即 ∑ k = 0 n + 1 C n k ( − x 2 ) k \sum\limits_{k=0}^{n+1}C_n^k(-x^2)^k k=0n+1Cnk(x2)k x n − 1 x^{n-1} xn1 项的系数的贡献是 2 k 2k 2k,要想凑出 n − 1 n-1 n1,那么后面的贡献就应该是 n − 2 k − 1 n-2k-1 n2k1,也就是说后面的 i = n − 2 k − 1 i = n-2k-1 i=n2k1 的时候的值就是它的贡献。所以总贡献就是:
∑ k = 0 [ n + 1 2 ] ( − 1 ) k C n + 1 k C 2 n − 2 k − 1 n \sum_{k=0}^{\left[\frac{n+1}{2}\right]}(-1)^kC_{n+1}^kC_{2n-2k-1}^n k=0[2n+1](1)kCn+1kC2n2k1n

  所以:
∑ k = 0 [ n + 1 2 ] ( − 1 ) k C n + 1 k C 2 n − 2 k − 1 n = 1 2 n ( n − 1 ) \sum_{k=0}^{\left[\frac{n+1}{2}\right]}(-1)^kC_{n+1}^kC_{2n-2k-1}^n = \frac 12 n (n-1) k=0[2n+1](1)kCn+1kC2n2k1n=21n(n1)

  证毕。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值