TensorFlow2.x 学习笔记(七)Keras高层接口

本文详细介绍了TensorFlow2.x中的Keras高层接口,包括metrics的update_state、result().numpy()和reset_states方法,compile与fit的使用,如Compile、Fit、Evaluate和Predict。此外,还讨论了如何利用keras.Sequential和keras.layers.Layer、keras.Model进行自定义网络设计,以及模型的保存和加载方法,如weights的保存与加载、整个模型的保存与加载以及saved_model格式。
摘要由CSDN通过智能技术生成

Keras高层接口

这里所指的均为tf.keras

Keras高层API

metrics

acc_meter = metrics.Accuracy()
loss_meter = metrics.Mean()
update_state
loss_meter.update_state(loss)
acc_meter.udate_state(y, pred)
result().numpy()
print(step, 'loss:', loss_meter.result().numpy())
print(step, 'Evaluate Acc:', total_correct/total, acc_meter.result().numpy())
reset_states
if step % 100 == 0:
    print(step, 'loss:', loss_meter.result().numpy())
    loss_meter.reset_states()

if step % 500 == 0:
    acc_meter.reset_states()

complie & fit

Compile
network.compile(optimizer=optimizers.Adam(lr=0.01),
        loss=tf.loss.CategoricalCrossentropy(from_logits=True),
        merics=['accuracy']</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值