如果更快的求一个整数k的n次方。如果两个整数相乘并得到结果的时间复杂度为O(1),得到整数k的N次方的过程请实现时间复杂度为O(logN)的方法。
给定k和n,请返回k的n次方,为了防止溢出,请返回结果Mod 1000000007的值。
测试样例:
2,3
返回:8
比如求10^75:
思路:
将N转化成二进制形式,先求出10^1,根据两个10^1可以求出10^2,再根据两个10^2可以求出10^4,依次……;如果对应二进制的位置为1,则累乘。
public class KPowN {
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(getValue(2,3));
System.out.println(getValue(10,75));
}
public static int getValue(int K, int N){
if(K==0)
return 0;
if(N==0)
return 1;
if(N==1)
return K;
long temp=K;
long res=1;
long f=1000000007;
for(;N>0;N>>=1){
if((N&1)!=0)
res*=temp;
res%=f;
temp=(temp*temp)%f;
}
return (int)res;
}
}