算法作业2.1----- Floyd算法求解各个顶点的最短距离

本文详细介绍了Floyd算法用于求解加权图中多源点之间最短路径的原理和步骤。通过动态规划,从权值矩阵开始,经过n次更新得到最短路径矩阵,时间复杂度为O(n^3)。文章包括问题解析、算法设计、复杂度分析,并提供了源码链接。
摘要由CSDN通过智能技术生成

1. 问题

用Floyd算法求解下图各个顶点的最短距离。写出Floyd算法的伪代码和给出距离矩阵(顶点之间的最短距离矩阵),按实验报告模板编写算法。
在这里插入图片描述

2. 解析

Floyd算法:
Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法

核心思路为:

路径矩阵
通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。
从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1);又用同样地公式由D(1)构造出D(2);……;最后又用同样的公式由D(n-1)构造出矩阵D(n)。矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径。
采用松弛技术(松弛操作),对在i和j之间的所有其他点进行一次松弛。所以时间复杂度为O(n^3);

状态转移方程
其状态转移方程如下: map[i,j]:=min{map[i,k]+map[k,j],map[i,j]};
map[i,j]表示i到j的最短距离,K是穷举i,j的断点,map[n,n]初值应该为0,或者按照题目意思来做。
当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i,k]这条路。

问题解决思路:
由Floyd算法可得:

一、 如果某个节点位于从起点到终点的最短距离路径上:则起点到终点的最短距离路径就等于起点到该节点的距离加上该节点到终点的距离。

二、 如果某个节点不在从起点到终点的最短距离路径上:则起点到终点的最短距离路径就小于起点到该节点的距离加上该节点到终点的距离。

举个例子:再上图中节点1到节点3的距离有3条:分别为:V1——>V3,V1——>V2——>V3,V1——>V4——>V3。在三条边中V1——>V2——>V3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值