首先我在网上看到这样一句话
交叉验证的目的:当数据量较少时,交叉验证可以评估模型的泛化能力,从而进行模型选择
随之而来就有了疑问
- 这个数据量较少,是多少,一般多少是较少,需要交叉验证了。
- 交叉验证为什么可以用来评估模型的泛化能力
接下来就开始找这些疑问的答案!
第一个问题:找了一圈,没有找到合适的解答。我自己的理解是要看情况数据量在几百的大小的时候应该需要,在上万的数据量时可以不用,这个需要看具体的情况。
第二个问题:为什么可以评估模型的泛化能力。k-1训练,另外一份测试,只要测试集不参与训练的过程,所训练出来的模型就是具有一定的泛化能力的。
k折交叉验证的原理简单理解
k折,就是k次,k种训练测试集划分方式。
它将训练数据分成K组(K-Fold),将每个子集数据分别做一次验证集,其余的K-1组子集数据作为训练集,这样会得到K个模型。
- 优点:能比较鲁棒性地评估模型在未知数据上的性能.
- 缺点:计算复杂度较大.因此,在数据集较大,模型复杂度较高,或者计算资源不是很充沛的情况下,可能不适用,尤其是在训练深度学习模型的时候.
下面思考一个问题,我的框架用的是keras,如何在Keras中实现呢
网上找到的是里有sklearn工具包来划分,有待进一步研究!