首先,标题的“最大加和上升子序列”是我自己起的名字。
实际上这题跟最长上升子序列(LIS)很像。
最长上升子序列就是,选取一个子序列(子序列是可以不连续的),让他能保持单调递增,且求出这个单调递增子序列的最长的是长度是多少。
就是记dp[i]是以a[i]结尾的LIS长度。
我们首先要保证在计算的序列他是递增的。并且因为dp[i]是截止到a[i]的,我们就考虑,前面的序列(1 ~ j, j <= i)满足a[i] > a[j],那么dp[i] = dp[j] +1。则我们所要求的就是:dp[i] = max(dp[i], dp[j] +1),最终的LIS就是max(dp[i])
这个题就非常相似,实际上就是一种变形
我们还是设dp[i]施以a[i]结尾的最大加和。
基本同理,就是我们需要判断,前面的那些满足a[i] > a[j] 的dp[j] + a[i]与当前求出来的dp[i]哪个更大。
对dp[j] + a[i] 的解释就是,在满足那个前提下,前面已求出来的加上现在这个数,与当前知道的最大的dp[i]做比较,取大的,就是我们要的答案。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#define ll long long
using namespace std;
ll dp[1000 + 10]; //1 tiao 0 bu_tiao
int n;
int a[1000 + 10];
void debug(){
for(int i = 1; i <= n; i++){
cout << dp[i] << endl;
}
}
int main(){
while(1){
cin >> n;
if(n == 0){
return 0;
}
for(int i = 1; i <= n; i++){
cin >> a[i];
}
ll ans = -999999;
for(int i = 1; i <= n; i++){
for(int j = 0; j <= i; j++){ //一定要从0开始,从0开始我们可以完成不选前面其他的序列的方案
if(a[i] > a[j]){
dp[i] = max(dp[i], dp[j] + a[i]); //就是,首先要满足要递增,然后前面化为的小问题,看现在的子列和,是要从当前这个开始呢,还是结合前面的一起来
}
}
ans = max(dp[i], ans); //要求所有的最大的嘛
}
// debug();
cout << ans << endl;
memset(dp, 0, sizeof(dp));
}
return 0;
}