hdu1087 最大加和上升子序列

首先,标题的“最大加和上升子序列”是我自己起的名字。
实际上这题跟最长上升子序列(LIS)很像。

最长上升子序列就是,选取一个子序列(子序列是可以不连续的),让他能保持单调递增,且求出这个单调递增子序列的最长的是长度是多少。

就是记dp[i]是以a[i]结尾的LIS长度。

我们首先要保证在计算的序列他是递增的。并且因为dp[i]是截止到a[i]的,我们就考虑,前面的序列(1 ~ j, j <= i)满足a[i] > a[j],那么dp[i] = dp[j] +1。则我们所要求的就是:dp[i] = max(dp[i], dp[j] +1),最终的LIS就是max(dp[i])

可结合这个视频来看


这个题就非常相似,实际上就是一种变形

我们还是设dp[i]施以a[i]结尾的最大加和。
基本同理,就是我们需要判断,前面的那些满足a[i] > a[j] 的dp[j] + a[i]与当前求出来的dp[i]哪个更大。
对dp[j] + a[i] 的解释就是,在满足那个前提下,前面已求出来的加上现在这个数,与当前知道的最大的dp[i]做比较,取大的,就是我们要的答案。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#define ll long long

using namespace std;

ll dp[1000 + 10]; //1 tiao 0 bu_tiao
int n;
int a[1000 + 10];

void debug(){
	for(int i = 1; i <= n; i++){
		cout << dp[i] << endl;
	}
}

int main(){
	while(1){
		cin >> n;
		if(n == 0){
			return 0;
		}
		for(int i = 1; i <= n; i++){
			cin >> a[i];
		}
		ll ans = -999999;
		for(int i = 1; i <= n; i++){
			for(int j = 0; j <= i; j++){ //一定要从0开始,从0开始我们可以完成不选前面其他的序列的方案
				if(a[i] > a[j]){
					dp[i] = max(dp[i], dp[j] + a[i]); //就是,首先要满足要递增,然后前面化为的小问题,看现在的子列和,是要从当前这个开始呢,还是结合前面的一起来			
				}
			}
			ans = max(dp[i], ans); //要求所有的最大的嘛
			
		}
//		debug();
		cout << ans << endl;
		memset(dp, 0, sizeof(dp));
	}
	return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值