生成信号的目的还是主要是为了学习和探究后面的分析方法;本文主要是对方法进行整理
瞬态 transient
瞬态信号是指的是一瞬间信号上去了,这种情况我们可以用在时域上高斯模拟
peaktime = 1; % seconds
width = .12;
ampl = 9;
gaus = ampl * exp( -(EEG.times-peaktime).^2 / (2*width^2) );
非稳态 Non-stationary
频率不成稳定的
freqmod = 5 + 20*interp1(rand(1,10),linspace(1,10,EEG.pnts)); % 范围5~25hz
signal = ampl * sin( 2*pi * ((EEG.times + cumsum(freqmod))/EEG.srate) );
一些结合
持续的非稳态 ongoing non-stationary
这种情况往往是需要生成窄带数据
创建窄带的非平稳数据,窄带非平稳依靠的是高斯分布两边的0,和生成在频率上的高斯分布,使得频率主要集中在峰上
% signal parameters in Hz
peakfreq = 14;
fwhm = 5;
% frequencies
hz = linspace(0,EEG.srate,EEG.pnts);
%%% create frequency-domain Gaussian 生成频域高斯分布
s = fwhm*(2*pi-1)/(4*pi); % normalized width
x = hz-peakfreq; % shifted frequencies
fg = exp(-.5*(x/s).^2); % gaussian
% Fourier coefficients of random spectrum
fc = rand(1,EEG.pnts) .* exp(1i*2*pi*rand(1,EEG.pnts));
% taper Fourier coefficients by the Gaussian
fc = fg .* fc; % 将随机频谱的傅里叶系数与生成的窗口函数相乘;更像给高斯分布加了一点噪声
% go back to time domain to get EEG data
EEG.data(chani,:,triali) = real( ifft(fc) );
瞬时振荡信号 transient oscillations
瞬时还是利用高斯来实现,振荡就要利用到正弦来进行振荡了
% sine wave frequency
sfreq = 8;
% gaussian parameters (in seconds)
peaktime = 1;
width = .2;
trialpeak = peaktime + randn/5;
gaus = exp( -(EEG.times-trialpeak).^2 / (2*width^2) );
% generate sine wave with same phase
sw = cos(2 * pi * sfreq * EEG.times);
% data are sine wave times Gaussian
EEG.data(chani,:,triali) = sw .* gaus;
噪音
白噪声
% 可以直接用正态分布或者均匀分布来生成
randn(EEG.nbchan, EEG.pnts, EEG.trials);
粉噪声
% the key parameter of pink noise is the exponential decay (ed)
ed = 50;
% generate one-sided 1/f amplitude spectrum
as = rand(1,EEG.pnts) .* exp(-(0:EEG.pnts-1)/ed);
% Fourier coefficients as amplitudes times random phases
fc = as .* exp(1i*2*pi*rand(size(as)));
% inverse Fourier transform to create the noise
EEG.data(chani,:,triali) = real(ifft(fc));