计数类DP初步

本文介绍了如何使用动态规划解决整数划分问题,即正整数n的不同划分方法数量。提供了两种解法:完全背包问题的视角和计数类DP。通过状态转移方程详细解释了每种方法的思路,最终给出解决方案并展示C++代码实现。
摘要由CSDN通过智能技术生成

整数划分

一个正整数 nn 可以表示成若干个正整数之和,形如:n=n1+n2+…+nk,其中 n1≥n2≥…≥nk,k≥1。

我们将这样的一种表示称为正整数 n 的一种划分。

现在给定一个正整数 n,请你求出 n 共有多少种不同的划分方法。

这个问题也可以看成完全背包问题,有n个物品,容量为n的背包,每个物品的价值是1~n,每个物品可以有无限个

状态转移方程就是: f [ i ] [ j ] = f [ i − 1 ] [ j ] + f [ i ] [ j − 1 ∗ i ] f[i][j] = f[i - 1][j] + f[i][j-1 * i] f[i][j]=f[i1][j]+f[i][j1i](我故意写成1 * i 这样更好理解 )

// Problem: 整数划分
// Contest: AcWing
// URL: https://www.acwing.com/problem/content/902/
// Memory Limit: 64 MB
// Time Limit: 1000 ms
// Code by: ING__
// 
// Powered by CP Editor (https://cpeditor.org)

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>

using namespace std;

const int N = 1010;
const int MOD = 1e9 + 7;

int n;
int f[N];

int main(){
	cin >> n;
	f[0] = 1; // 这里要进行初始化,这里的完全背包要求的是要恰好装满背包
	for(int i = 1; i <= n; i++){
		for(int j = i; j <= n; j++){
			f[j] = (f[j] + f[j - i * 1]) % MOD;
		}
	}
	cout << f[n];
	return 0;
}

这个题还有另一种解法,就是正题,计数类DP解法。

状态表示:f[i][j] 表示所有总和是i,并且恰好表示成 j 个数的和的方案

状态划分为两个区域:在表示该数的方案中有小于 1 的数存在和 不存在小于 1 的方案(也就是方案中每个数都大于 1 )

状态转移方程就是: f [ i ] [ j ] = f [ i − 1 ] [ j − 1 ] + f [ i − j ] [ j ] f[i][j] =f[i-1][j-1]+f[i-j][j] f[i][j]=f[i1][j1]+f[ij][j]

怎么解释上面这个方程呢qwq

如果在表示该数的方案存在小于1的数,那么我们可以去掉这个1,那么显然方案数就是 f [ i − 1 ] [ j − 1 ] f[i-1][j-1] f[i1][j1]

如果在表示该数的方案的那些全部的数的都是大于1的,那么我让它全部的数都减去 1,显然数的个数是不会少的,所以方案数就是 f [ i − j ] [ j ] f[i-j][j] f[ij][j]

最后的答案就是 ∑ i = 1 n f [ n ] [ i ] \sum_{i=1}^{n} f[n][i] i=1nf[n][i]

// Problem: 整数划分
// Contest: AcWing
// URL: https://www.acwing.com/problem/content/902/
// Memory Limit: 64 MB
// Time Limit: 1000 ms
// Code by: ING__
// 
// Powered by CP Editor (https://cpeditor.org)

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>

using namespace std;

const int N = 1010;
const int MOD = 1e9 + 7;

int n;
int f[N][N];

int main(){
	cin >> n;
	f[0][0] = 1;
	for(int i = 1; i <= n; i++){
		for(int j = 1;j <= i; j++){
			f[i][j] = (f[i - 1][j - 1] + f[i - j][j]) % MOD;
		}
	}
	
	int ans = 0;
	for(int i = 1; i <= n; i++){
		ans += f[n][i];
	}
	cout << ans;
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值