Algorithm F
Algorithm F (Fibonaccian search). Given a table of records R1R2 … RN whose
keys are in increasing order K1 < K2 < … < KN, this algorithm searches for a
given argument K.
In this case, N + 1 is not a perfect Fibonacci number, Fk+1. It is not difficult to make
the method work for arbitrary N, if a suitable initialization is provided (see exercise 14).
One idea is to find the least M>=0 such that N+M has the form Fk+1-1.
F1. [Initialize.] Set i <– Fk, p <– Fk-1, q <– Fk-2. (Throughout the algorithm,
p and q will be consecutive Fibonacci numbers.)
F1.5.[Very first comparison K:KFk.] If K>KFk, i=i-M and go to F4.(proceeding normally from then on)
F2. [Compare.] If i<=0, go to F4; If K < Ki, go to step F3; if K > Ki, go to F4; and if K = Ki,
the algorithm terminates successfully.
F3. [Decrease i.] If q = 0, the algorithm terminates unsuccessfully. Otherwise
set i <– i-q, and set (p, q) <– (q, p-q); then return to F2.
F4. [Increase i.] If p = 1, the algorithm terminates unsuccessfully. Otherwise
set i <– i + q, p <– p - q, then q <– q - p, and return to F2. |
Java program
In this program, R1,…,RN were simplified to K1,…,KN.
/**
* Created with IntelliJ IDEA.
* User: 1O1O
* Date: 12/11/13
* Time: 6:52 PM
* :)~
* Fibonaccian Search-3:N+1 is NOT a perfect Fibonacci number:Searching
*/
public class Main {
public static void main(String[] args) {
int N = 16;
int[] K = new int[17];
/*Prepare the ordered data table*/
K[1] = 61;
K[2] = 87;
K[3] = 154;
K[4] = 170;
K[5] = 275;
K[6] = 426;
K[7] = 503;
K[8] = 509;
K[9] = 512;
K[10] = 612;
K[11] = 653;
K[12] = 677;
K[13] = 703;
K[14] = 765;
K[15] = 897;
K[16] = 908;
/*Output sorted Ks*/
System.out.println("Sorted Ks:");
for(int i=1; i<=N; i++){
System.out.println(i+":"+K[i]);
}
System.out.println();
/*Kernel of the Algorithm!*/
int Key = 653; /*Key to be found*/
/*Fibonacci number:0,1,1,2,3,5,8,13,21,34,55...*/
/*Fn = Fn-1 + Fn-2, F0 = 0, F1 = 1...*/
/*In this case: N+1=17 is not a perfect Fibonacci number
then, find the least M>=0 such that N+M has the form Fk+1-1
and obviously the M is 4, N+M=20=F8-1=Fk+1-1, then k=7
then i=Fk=F7=13, p=Fk-1=F6=8, q=Fk-2=F5=5*/
int i = 13;
int p = 8;
int q = 5;
int M = 4;
if(Key > K[i]){
i-=M;
i = i+q;
p = p-q;
q = q-p;
}
do{
if(Key > K[i]){
if(p == 1){
System.out.println("Outputs: "+Key+" not found.");
break;
}else {
i = i+q;
p = p-q;
q = q-p;
}
}else if(Key < K[i]){
if(q == 0){
System.out.println("Outputs: "+Key+" not found.");
break;
}else {
i = i-q;
int temp = q;
q = p-q;
p = temp;
}
}else {
System.out.println("Outputs: "+Key+" in K["+i+"].");
break;
}
}while (true);
}
}
Outputs
Sorted Ks:
1:61
2:87
3:154
4:170
5:275
6:426
7:503
8:509
9:512
10:612
11:653
12:677
13:703
14:765
15:897
16:908
Outputs: 653 in K[11].
Reference
<< The art of computer programming: Sorting and Searching >> VOLUME 3, DONALD E. KNUTH