离散数学(二)总结:普通计数,高级计数,数论

离散数学(二)这门课说实话不难,总共就24个学时,一共3章:普通计数,高级技术与数论。今晚就要考试了,慌慌,赶紧写个总结。

普通计数

普通计数主要是高中高考数学的延伸,其中包括了经典计数、排列组合、二项式定理。

  • 经典计数:加法乘法原理,鸽巢原理

  • 排列组合:N元素的可重复、不可重复的R排列、R组合问题。

  • 二项式定理和帕斯卡三角恒等式

  • ( x + y ) m = ∑ i = 0 n C ( n , i ) x i y m − i (x+y)^m=\sum_{i=0}^nC(n,i)x^iy^{m-i} (x+y)m=i=0nC(n,i)xiymi

  • 帕斯卡三角恒等式,这个是有实际意义的,需要用组合证明法来证明。左边是在 N + 1 N+1 N+1个元素中选取 K K K个独立元素。右边是在把 N + 1 N+1 N+1个元素分成两份:一份有N个元素,另一份有1个元素,那么从N+1个元素中选取K个元素可以分为两种情况:先把另一个的一个元素选了,再在N个元素中选取K-1个元素,这样就是 C ( n , k − 1 ) C(n,k-1) C(n,k1),另一种情况就是不选另一份的一个元素,只在N个元素的这一份里选K个元素,结果就是 C ( n , k ) C(n,k) C(n,k),因为这两种情况是互斥的,因此结果是加法。

  • C ( n + 1 , k ) = C ( n , k ) + C ( n , k − 1 ) C(n+1,k)=C(n,k)+C(n,k-1) C(n+1,k)=C(n,k)+C(n,k1)

  • 高级计数

​ 高级计数很高级,高中没学过,主要内容是递推关系及其应用、生成多项式的计算与容斥原理及其应用。

​ 递推关系不需要多讲,生成多项式需要关注两点。
1 : 1 + x + x 2 + . . . + x n = 1 − x n + 1 1 − x 1:1+x+x^2+...+x^n=\frac{1-x^{n+1}}{1-x} 1:1+x+x2+...+xn=1x1xn+1

2 : ∑ i = 0 n a i x i ∗ ∑ i = 0 n b i x i = ∑ i = 0 n ∑ j = 0 i a j b i − j x i 典 型 的 应 用 : ( ∑ i = 0 n x i ) 2 = ∑ i = 0 n ( i + 1 ) x i 2:\sum_{i=0}^na_ix^i*\sum_{i=0}^nb_ix^i=\sum_{i=0}^n\sum_{j=0}^{i}a_jb_{i-j}x^i\\ 典型的应用:({\sum_{i=0}^nx^i})^2=\sum_{i=0}^n(i+1)x^i 2:i=0naixii=0nbixi=i=0nj=0iajbijxi(i=0nxi)2=i=0n(i+1)xi

容斥原理:十分的关键,最简单的公式如下:
A ∪ B ∪ C = A + B + C − A ∩ B − B ∩ C − A ∩ C + A ∩ B ∩ C A\cup B \cup C=A+B+C-A\cap B-B\cap C-A\cap C+A\cap B\cap C ABC=A+B+CABBCAC+ABC
容斥原理的应用主要有求映上函数和错位排列,需要会算。

数论

主要内容有素数、最大公约数、最小公倍数的概念。求余运算及其应用,包括模指数运算,求模的逆如何求,费马小定理和欧拉定理。RSA加密解密系统。其中关键在求模的逆,费马小定理与欧拉定理与RSA加密解密系统。

求模逆:主要有辗转相除法。例题:
65 x ≡ 25 ( m o d 111 ) s o l u t i o n : 111 = 65 + 46 65 = 46 + 19 46 = 19 ∗ 2 + 8 19 = 8 ∗ 2 + 3 8 = 3 ∗ 2 + 2 3 = 2 + 1 − > 反 过 来 表 示 。 1 = 3 − 2 1 = 3 − ( 8 − 3 ∗ 2 ) = 3 ∗ 3 − 8 1 = 3 ∗ ( 19 − 8 ∗ 2 ) − 8 = 3 ∗ 19 − 7 ∗ 8 1 = 3 ∗ 19 − 7 ∗ ( 46 − 19 ∗ 2 ) = 17 ∗ 19 − 7 ∗ 46 1 = 17 ∗ ( 65 − 46 ) − 7 ∗ 46 = 17 ∗ 65 − 24 ∗ 46 1 = 17 ∗ 65 − 24 ∗ ( 111 − 65 ) = 41 ∗ 65 − 24 ∗ 111 65x \equiv 25(mod 111)\\ solution:111=65+46\\65=46+19\\46=19*2+8\\19=8*2+3\\8=3*2+2\\3=2+1\\ ->反过来表示。\\ 1=3-2\\1=3-(8-3*2)=3*3-8\\ 1=3*(19-8*2)-8=3*19-7*8\\ 1=3*19-7*(46-19*2)=17*19-7*46\\ 1=17*(65-46)-7*46=17*65-24*46\\ 1=17*65-24*(111-65)=41*65-24*111\\ 65x25(mod111)solution:111=65+4665=46+1946=192+819=82+38=32+23=2+1>1=321=3(832)=3381=3(1982)8=319781=3197(46192)=17197461=17(6546)746=176524461=176524(11165)=416524111
最后求得 x = 41 x=41 x=41

再介绍欧拉定理。
记 ϕ ( n ) 是 n 中 小 于 n 且 和 n 互 素 的 正 整 数 的 个 数 如 ϕ ( 12 ) = { 1 , 5 , 7 , 11 } = 4 ( 欧 拉 函 数 ) 那 么 任 何 一 小 于 n 且 与 n 互 素 的 正 整 数 a , 满 足 : a ϕ ( n ) ≡ 1 ( m o d   n ) 。 ( 欧 拉 定 理 ) 特 别 地 , 若 n 是 素 数 , 则 ϕ ( n ) = n − 1 , 则 a n − 1 ≡ 1 (   m o d   n ) ( 费 马 小 定 理 ) 记\phi(n)是n中小于n且和n互素的正整数的个数\\如\phi(12)=\{1,5,7,11\}=4(欧拉函数)\\ 那么任何一小于n且与n互素的正整数a,满足:\\a^{\phi(n)}\equiv1( mod\ n)。(欧拉定理) \\特别地,若n是素数,则\phi(n)=n-1,则a^{n-1}\equiv1(\ mod\ n)(费马小定理) ϕ(n)nnnϕ(12)={1,5,7,11}=4()nna,aϕ(n)1(mod n)()nϕ(n)=n1an11( mod n)()

这两个定理在模余运算的证明中十分有用。

最后简单介绍一下RSA加密解密系统,RSA系统加密依靠数对 ( N , e ) (N,e) (N,e)作为密钥,N通常是两个素数 p q pq pq的和,对于任意一个数,若 2525 ≤ N ≤ 252525 2525\leq N \leq 252525 2525N252525,则这个数按4位分开,反之则2位,6位等。

加密过程:给定一个数 t t t,求 t e   m o d   N t^e\ mod\ N te mod N

解密过程:给定密文 t t t首先解方程 e ∗ d ≡ 1 (   m o d   ( p − 1 ) ( q − 1 ) ) e*d\equiv 1(\ mod\ (p-1)(q-1)) ed1( mod (p1)(q1)),最后对每一个密文求 t d   m o d   N t^d\ mod\ N td mod N

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值