九宫格
将数字 1 ,2,3… 9 填入一个 3×3 的九宫格中,使得格子中每一横行和的值全部相等,每一竖列和的值全部相等。请你计算有多少种填数字的方案.
思路:
使用递归调用,每一个空格填入一个与前面不相同的数字,数字是1-9,用一个循环遍历,递归出口,就是填了9个数字,然后判断是否符合,是count++,返回,不是也返回。
附上代码:
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
using namespace std;
//判断不同的数字,防止数字重复
int isFlag(int x,int ishave[],int len)
{
for(int i=0; i<len; i++)
{
if(x==ishave[i])
return 0;
}
return 1;
}
int count=0;
void dfs(int flag[][3],int len,int ishave[])
{
if(len==9)
{
int row1=0,row2=0,row3=0;
int col1=0,col2=0,col3=0;
for(int i=0; i<3; i++)
{
for(int j=0; j<3; j++)
{
if(i==0)
row1+=flag[0][j];
if(i==1)
row2+=flag[1][j];
if(i==2)
row3+=flag[2][j];
if(j==0)
col1+=flag[i][0];
if(j==1)
col2+=flag[i][1];
if(j==2)
col3+=flag[i][2];
}
}
if(row1==row2&&row2==row3&&col1==col2&&col2==col3)
{
for(int i=0; i<3; i++)
{
for(int j=0; j<3; j++)
{
cout<<flag[i][j]<<" ";
}
cout<<endl;
}
count++;
cout<<endl;
}
return;
}
for(int k=1; k<=9; k++)
{
if(isFlag(k,ishave,len))
{
ishave[len]=k;
int k1=len/3,k2=len%3;
flag[k1][k2]=k;
dfs(flag,len+1,ishave);
}
}
}
int main()
{
int f[3][3]=
{
{0,0,0},
{0,0,0},
{0,0,0}
};
int ishave[9];
dfs(f,0,ishave);
cout<<count;
return 0;
}
-