数字图像处理学习笔记(五)——像素间的基本关系(相邻像素及连通性)

数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。本专栏将以学习笔记形式对数字图像处理的重点基础知识进行总结整理,欢迎大家一起学习交流!
 专栏链接:数字图像处理学习笔记

一、相邻像素

★相邻像素: 4邻域、 D邻域 、8邻域

★4邻域

   ☞像素p(x,y)的4邻域是: (x+1,y);(x-1,y);(x,y+1);(x,y-1)
   ☞用N_{4}(p)表示像素p的4邻域

       

★D邻域

   ☞像素p(x,y)的D邻域是: 对角上的点 (x+1,y+1);(x+1,y-1); (x-1,y+1);(x-1,y-1)
   ☞用N_{D}(p)表示像素p的D邻域

         

★8邻域定义

   ☞像素p(x,y)的8邻域是: 4邻域的点 + D邻域的点
   ☞用N8(p)表示像素p的8邻域。 N8(p) = N4(p) + ND(p)

                         


二、连通性

★连通性 :4连通、8连通 、m连通

连通性是描述区域和边界的重要概念

两个像素连通的两个必要条件是: 
   ☞两个像素的位置是否相邻
   ☞两个像素的灰度值是否满足特定的相似性准则(或者是否相等)

★4连通

对于具有值V的像素p和q,如果q在集合N_{4}(p)中,则称这两个像素是4 连通的

          

★8连通

对于具有值V的像素p和q,如果q在集合N_{8}(p)中,则称这两个像素是8连通的

           

★m连通

对于具有值V的像素p和q,如果:
         ①q在集合{\color{Red}N _{4}}(p)中;
     或②q在集合{\color{Red} N_{D}}(p)中,并且{\color{Red}N _{4}}(p)与{\color{Red}N _{4}}(q) 的交集为空(没有值V的像素) 则称这两个像素是m连通的,即4连通和D连通的混合连通。

☆光位置相交不行,需要值相交☆上图中下边两图p,q的4领域位置均有相交,左边图相交位置值也相交(值为1),故不是m邻接;右边图相交位置值未相交(值为0),故为m邻接

那么下面要讨论的问题是,为什么要引入m连通这一概念呢?

    答案是:为了消除二义性

那么如何消除二义性呢?下面给出一个例子便于理解

在上图这个8通路中我们发现,A到C的方式有A→B→C和A→C两种,这在机器处理时就出现了二义性
如果利用m领域的概念,我们发现A到C的方式中从A直接到C(A→C)的方式是不可行的,因为A和C无法连通(无法连通是因为A的4邻域和C的4邻域有位置与数值相交的点B)【如下图所示】


因此A到C的方式只有A→B→C这一种,至此,就使用m邻域消除了上述的二义性。


在本文最后再介绍几个概念有助于进一步理解像素间的基本关系

连通:令S是图像中的一个像素子集,若S的全部像素之间存在一个通路,则可以说S中的两个像素p和q在S中是连通的。

像素子集S{A,B,C,D}存在一个通路D→A→B→C,则S中任意两个像素在S中都是连通的

连通分量:对于S中的任何像素p,S中连通到该像素的像素集称为连通分量。

像素子集S{A,B,C,D}中像素A,有连通到该像素的像素集合{B,C,D},则称像素集{B,C,D}为连通分量

连通集:若S只有一个连通分量,则集合S称为连通集。

像素子集S{A,B,C,D}中像素A,有且只有一个连通到该像素的像素集合{B,C,D},则称像素集S为连通集

区域:令R是图像的一个像素子集,如果R为连通集,则称R为一个区域。
邻接区域:两个区域,如果他们联合形成一个连通集,则区域R_{i}R_{j}称为邻接区域。(谈区域必须指定是4邻接还是8邻接)

由上述可知像素子集R{A,B,C,D}是一个连通集,也就是说R为一个区域

边界:内边界:该区域中和背景相邻接的点的集合
           外边界:对应于背景边界

1值区域的内边界就是区域本身,外边界是围绕该区域的闭合通路

实例

如果要从像素S到像素T:

在4连通的条件下,S不能到T,因为像素S和像素T不满足4邻接关系;

在8连通的条件下,S可以到T;

在8连通的条件下,S可以到T。


欢迎留言,一起学习交流~~~

感谢阅读

END

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荣仔!最靓的仔!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值