- 博客(9)
- 资源 (1)
- 收藏
- 关注
原创 java代码----实现因子分析算法
许久没有管自己的博客了,问我要源码的亲们,现在可以看了,希望可以帮到你们。代码如下:import java.sql.ResultSet;import java.sql.SQLException;import java.util.ArrayList;import java.util.Comparator;import java.util.HashMap;import java.util...
2018-10-25 15:18:48 1700 8
原创 第一章 矩阵代数
比较重要的一些概念。正交:若两个p维向量a和b满足 则称a和b正交。几何上,正交向量之间相互垂直。若方阵A满足AA′=I,则称A为正交矩阵。正交矩阵的三个等价定义:若方阵A满足A2=A,则称A为幂等矩阵。对称的幂等矩阵称为投影矩阵。正交矩阵A的几何意义 正交阵A的行列式非1即−1。若|A|=1,则正交变换y=Ax意味着对原p维坐标系作一刚性旋转(或称正交旋转),y的各分量正是该点在新坐
2017-05-01 21:32:22 798
原创 机器学习解决问题的框架
训练模型定义模型:根据具体要解决的问题;定义损失函数:预测的结果与真实的结果之间的偏差最小的函数;优化算法:损失函数取极小值。模型评估 - 交叉验证 - 效果评估
2017-05-01 20:53:18 672
原创 因子分析法--用Java语言设计算法
懂了因子分析的原理,再来根据实际问题设计算法。样本数据标准化—公式如下: java实现代码如下:// 计算期望与标准差,标准化数据 public double[][] getStandard(double[][] array) { int h = array.length; // 行号--h int l = array[0].length;// 列号
2017-04-22 16:41:38 3642 2
原创 KNN算法实例---手写数字识别
先介绍两个距离公式,欧式距离和夹角余弦。欧式距离: 欧式距离是最易理解的一种距离计算方法,源自欧式空间中两点间的距离公式(如图1.9)。目的是计算其间的整体距离即不相似性,距离越近就越相似。 夹角余弦: 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异(如图1.10)。 夹角余弦取值范围 [ -1,1]。夹角余弦越大表示两个向量的夹角越小,夹
2017-04-18 22:04:04 4053
原创 KNN算法介绍
算法原理 KNN即K-Nearest Neighbor,采用测量不同特征值之间的距离方法进行分类,其主要思想是,如果一个样本在特征空间中的k个最近邻的样本中的大多数都属于某一类别,则该样本也属于这个类别,k通常是不大于20的整数。算法描述 1) 初始化距离为最大值 2) 计算未知样本和每个训练样本的距离dist 3) 得到目前K个最近邻样本中的最大距离maxdist 4) 如果d
2017-04-18 21:42:42 991
转载 servlet中的service()、doPost()、doGet()方法
HttpServlet里的三个方法:service(HttpServletRequest req, HttpServletResponse resp) ,doGet(HttpServletRequest req, HttpServletResponse resp), doPost(HttpServletRequest req, HttpServletResponse res)的区别和联系:在ser
2017-04-17 19:29:10 748
原创 因子分析原理
1.基本思想因子分析是根据相关性大小把原始变量进行分组,使得同组内的变量之间相关性较高,而不同组的变量间的相关性则较低。每组变量代表一个基本结构,并用一个不可观测的综合变量表示,这个基本结构就称为公共因子。2.主要步骤确认待分析的原变量是否适合作因子分析构造因子变量利用旋转方法使因子变量更具有可解释性计算因子变量得分3.计算过程将原始数据标准化,以消除变量间在数量级和量纲上的不同。 求标
2017-04-12 10:51:04 61418 1
原创 数据库的范式
数据库三范式:第一范式:原子性,表里面的字段不能再分割,只要是关系型数据库,就自动满足第一范式第二范式:一个表中没有完全相同的记录,通过一个主键就能解决第三范式:表中不能存储冗余数据
2017-03-22 20:36:53 317
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人