先介绍两个距离公式,欧式距离和夹角余弦。
欧式距离:
欧式距离是最易理解的一种距离计算方法,源自欧式空间中两点间的距离公式(如图1.9)。目的是计算其间的整体距离即不相似性,距离越近就越相似。
夹角余弦:
几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异(如图1.10)。
夹角余弦取值范围 [ -1,1]。夹角余弦越大表示两个向量的夹角越小,夹角余弦越小表示两向量的夹角越大。当两个向量的方向重合时夹角余弦取最大值1,当两个向量的方向完全相反夹角余弦取最小值-1。数据准备:
trainingDigits:训练数据,1934个文件,每个数字大约200个文件。
testDigits:测试数据,946个文件,每个数字大约100个文件。手写数字识别—Python代码一(夹角余弦)
import numpy as np
from imp import reload
from os import listdir
import operator
import matplotlib.pyplot as plt
#将图像转换成测试向量
def img2vector(filename):
#创建零向量
returnVec = np.zeros((1,1024))
#打开数据文件,读取每行内容
fr = open(filename,'r')
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVec[0,32*i+j] = int(lineStr[j]) #将每行前32字符转成int存入向量
return returnVec
#夹角余弦距离公式
def cosdist(vector1,vector2):
return np.dot(vector1,vector2)/(np.linalg.norm(vector1) * np.linalg.norm(vector2))
#KNN实现分类器---测试集:testdata, 训练集:trainSet,类别标签:labels,k:k个邻居数
def classify(testdata,trainSet,labels,k):
dataSetSize = trainSet.shape[0] #返回样本集的行数
distances = np.array(np.zeros(dataSetSize))
for indx in range(dataSetSize): #计算测试集与训练集之间的距离:夹角余弦
distances[indx] = cosdist(testdata,trainSet[indx])
#夹角余弦按从大到小排序,结果为索引号
sortedDistIndicies = np.argsort(-distances)
classCount = {}
#获取前k项作为参考项
for i in range(k):
#按排序顺序返回样本集对应的类别标签
voteIlabel = labels[sortedDistIndicies[i]]
#为字典classCount赋值,相同key,其value加1
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
#选取出现的类别次数最多的类别
maxCount = 0
for key,value in classCount.items():
if value > maxCount :
maxCount = value
classes = key
return classes
def handwritingClassTest():
#样本数据标签
hwLabels = []
#读取样本数据文件
trainingFileList = listdir(r'E:\python\KNNData\trainingDigits') #读取txt文件名称
m = len(trainingFileList)
#零矩阵
trainingMat = np.zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
#将样本数据存入矩阵
trainingMat[i,:] = img2vector(r'E:\python\KNNData\trainingDigits\%s' % fileNameStr)
#读取测试数据
testFileList = listdir(r'E:\python\KNNData\testDigits')
errorCount = 0.0 #错误率
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
#读取数据向量
vectorUnderTest = img2vector(r'E:\python\KNNData\testDigits\%s' % fileNameStr)
classifierResult = classify(vectorUnderTest,trainingMat,hwLabels,1) #测试数据分类
print('KNN算法的分类结果:%d , 真实结果:%d' % (classifierResult,classNumStr))
if(classifierResult != classNumStr): errorCount += 1.0
print('k = 1')
print('错误次数:%d' % errorCount)
print('错误率:%f' % (errorCount/float(mTest)))
return hwLabels
labels = handwritingClassTest()
print('labels:',set(labels))
- 代码二(欧式距离)
import numpy as np
from imp import reload
from os import listdir
import operator
#将图像转换成测试向量
def img2vector(filename):
#创建向量
returnVec = np.zeros((1,1024))
#打开数据文件,读取每行内容
fr = open(filename,'r')
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVec[0,32*i+j] = int(lineStr[j]) #将每行前32字符转成int存入向量
return returnVec
#KNN实现分类器---测试集:testdata, 训练集:trainSet,类别标签:labels,k:k个邻居数
def classify(testdata,trainSet,labels,k):
dataSetSize = trainSet.shape[0] #返回样本集的行数
#计算测试集与训练集之间的距离:欧式距离
diffMat = np.tile(testdata,(dataSetSize,1))- trainSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
#距离从低到高排序
sortedDistIndicies = distances.argsort()
classCount = {}
#获取前k项作为参考项
for i in range(k):
#按排序顺序返回样本集对应的类别标签
voteIlabel = labels[sortedDistIndicies[i]]
#为字典classCount赋值,相同key,其value加1
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
#选取出现的类别次数最多的类别
maxCount = 0
for key,value in classCount.items():
if value > maxCount :
maxCount = value
classes = key
return classes
def handwritingClassTest():
#样本数据标签
hwLabels = []
#样本数据文件
trainingFileList = listdir(r'E:\python\KNNData\trainingDigits')
m = len(trainingFileList)
trainingMat = np.zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
#将样本数据存入矩阵
trainingMat[i,:] = img2vector(r'E:\python\KNNData\trainingDigits\%s' % fileNameStr)
#读取测试数据
testFileList = listdir(r'E:\python\KNNData\testDigits')
errorCount = 0.0 #错误率
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
#读取数据向量
vectorUnderTest = img2vector(r'E:\python\KNNData\testDigits\%s' % fileNameStr)
classifierResult = classify(vectorUnderTest,trainingMat,hwLabels,3) #测试数据分类
print('KNN算法的分类结果:%d , 真实结果:%d' % (classifierResult,classNumStr))
if(classifierResult != classNumStr): errorCount += 1.0
print('k = 3')
print('错误次数:%d' % errorCount)
print('错误率:%f' % (errorCount/float(mTest)))
handwritingClassTest()
先导篇–KNN算法介绍