机器学习
ITzym
这个作者很懒,什么都没留下…
展开
-
KNN算法介绍
算法原理 KNN即K-Nearest Neighbor,采用测量不同特征值之间的距离方法进行分类,其主要思想是,如果一个样本在特征空间中的k个最近邻的样本中的大多数都属于某一类别,则该样本也属于这个类别,k通常是不大于20的整数。 算法描述 1) 初始化距离为最大值 2) 计算未知样本和每个训练样本的距离dist 3) 得到目前K个最近邻样本中的最大距离maxdist 4) 如果d原创 2017-04-18 21:42:42 · 990 阅读 · 0 评论 -
KNN算法实例---手写数字识别
先介绍两个距离公式,欧式距离和夹角余弦。 欧式距离: 欧式距离是最易理解的一种距离计算方法,源自欧式空间中两点间的距离公式(如图1.9)。目的是计算其间的整体距离即不相似性,距离越近就越相似。 夹角余弦: 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异(如图1.10)。 夹角余弦取值范围 [ -1,1]。夹角余弦越大表示两个向量的夹角越小,夹原创 2017-04-18 22:04:04 · 4048 阅读 · 0 评论 -
机器学习解决问题的框架
训练模型 定义模型:根据具体要解决的问题; 定义损失函数:预测的结果与真实的结果之间的偏差最小的函数; 优化算法:损失函数取极小值。 模型评估 - 交叉验证 - 效果评估原创 2017-05-01 20:53:18 · 670 阅读 · 0 评论