题意:给定两个字符串a,b,长度相等且不超过100。每次可以将a的一个子串改为江铜字符组成的子串,问最少多少次能将a变为b
题解:这题稍微有点难了emm
- 大佬题解:先不考虑a,dp[i][j]先表示将一个空串转化为b[i~j]的最小操作;然后再考虑a的影响,如果a[k]==b[k],dp[i][j]=min(dp[i][j],dp[i][k-1]+dp[k+1][j])。
总结:重点是分成两步解决
代码:
大佬代码:
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <string>
using namespace std;
const int N = 105;
int dp[N][N];
char a[N], b[N];
int main() {
while (~scanf("%s", a + 1)) {
scanf("%s", b + 1);
int n = strlen(b + 1);
//将空串填成b
for (int i = n; i >= 1; --i) {
for (int j = i; j <= n; ++j) {
dp[i][j] = j - i + 1;
for (int k = i; k + 1 <= j; ++k) {
if (b[i] == b[k + 1])
dp[i][j] = min(dp[i][j], dp[i + 1][k] + dp[k + 1][j]);
//更新k+1的时候就整段覆盖了i+1~k再自行解决
else
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j]);
}
}
}
// cout << dp[1][n] << endl;
//再在b的基础上考虑a的影响
for (int i = n; i >= 1; --i) {
for (int j = i; j <= n; ++j) {
for (int k = i; k <= j; ++k) {
if (a[k] == b[k])
dp[i][j] = min(dp[i][j], dp[i][k - 1] + dp[k + 1][j]);
}
}
}
printf("%d\n", dp[1][n]);
}
return 0;
}
转化成我的代码:
- 第一步(不考虑a)的操作不一样,我认为区间dp都可以小区间->大区间的更新方式(上面大佬并不是,我试了试,果然也ok)
- 第二部(考虑a)的操作一样,因为第二步很明显只需要在更新dp[i][j]的时候将所有的dp[i][i~j-1],dp[i-1~j][j]更新了就ok了(实际上也是可以小区间->大区间的)
- 注意:表示的是在更新区间dp[i][k]的时候可以顺便把b[k~n]更新为b[k](同理也可以同时更新b[1~i-1]为b[i]),然后k+1~j-1区间取最小操作数即可(该区间自行操作)。
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <string>
// #define int long long
using namespace std;
const int N = 1e2 + 10;
const int INF = 1e9; //最大不超过1e8
int n, dp[N][N];
char a[N], b[N];
signed main() {
while (scanf("%s%s", a + 1, b + 1) != EOF) {
n = strlen(a + 1);
int len, i, j, k;
for (i = 1; i <= n; i++) dp[i][i] = 1;
for (len = 2; len <= n; len++) {
for (i = 1; i + len - 1 <= n; i++) {
j = i + len - 1;
if (b[j] == b[j - 1])
dp[i][j] = dp[i][j - 1];
else
dp[i][j] = dp[i][j - 1] + 1;
for (k = i; k < j; k++) {
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j]);
if (b[k] == b[j])
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j - 1]);
}
}
}
// for (i = 1; i <= n; i++) {
// for (j = 1; j <= n; j++) {
// if (dp[i][j] == INF) dp[i][j] = -1;
// printf("%3d ", dp[i][j]);
// }
// cout << endl;
// }
for (i = 1; i <= n; i++) {
for (j = i; j <= n; j++) {
for (k = i; k <= j; k++) {
if (a[k] == b[k])
dp[i][j] = min(dp[i][j], dp[i][k - 1] + dp[k + 1][j]);
}
}
}
cout << dp[1][n] << endl;
}
return 0;
}
/*
inpput:::
zzzzzfzzzzz
abcdefedcba
abababababab
cdcdcdcdcdcd
output:::
6
7
*/