笔记

1.GCN

在这里插入图片描述

图上的图信号:
x = [ 1 , 2 , 3 , 4 , 4 ] x=[1,2,3,4,4] x=[1,2,3,4,4]

先滤波,再做非线性变换
x ′ = g θ ∗ x k x' = g_{\theta}* x_{k} x=gθxk x k + 1 = σ ( w x ′ ) x_{k+1} = \sigma(wx') xk+1=σ(wx)

使用图卷积滤波:
g θ ∗ x = U g θ U T x g_{\theta}* x=U g_{\theta}U^T x gθx=UgθUTx
其中: L = I N − D − 1 / 2 A D − 1 / 2 = U Λ U T L=I_N-D^{-1/2}AD^{-1/2}=U\Lambda U^T L=IND1/2AD1/2=UΛUT, g θ = d i a g ( θ ) g_{\theta} = diag(\theta) gθ=diag(θ)

简化滤波过程:

1.1 切比雪夫近似

由Hammond et al. (2011)得,有切比雪夫近似:
g θ ′ ( Λ ) ≈ ∑ k = 0 K θ k ′ T k ( Λ ~ ) g_{\theta'}(\Lambda) \approx \sum^{K}_{k=0} \theta'_k T_k(\tilde{\Lambda}) gθ(Λ)k=0KθkTk(Λ~)

其中: Λ ~ = 2 λ m a x Λ − I N \tilde{\Lambda}=\frac{2}{\lambda_{max}}\Lambda -I_N Λ~=λmax2ΛIN, T k = 2 x T k − 1 ( x ) − T k − 2 ( x ) T_k=2xT_{k-1}(x)-T_{k-2}(x) Tk=2xTk1(x)Tk2(x), T 0 ( x ) = 1 T_0(x)=1 T0(x)=1, T 1 ( x ) = x T_1(x)=x T1(x)=x

因此有:

g θ ′ ∗ x = U g θ ( Λ ) U T x ≈ U ∑ k = 0 K θ k ′ T k ( Λ ~ ) U T x = ∑ k = 0 K θ k ′ U T k ( Λ ~ ) U T x = ∑ k = 0 K θ k ′ T k ( U Λ ~ U T ) x = ∑ k = 0 K θ k ′ T k ( L ~ ) x g_{\theta'} * x =U g_{\theta}(\Lambda) U^T x \\ \approx U \sum^{K}_{k=0} \theta'_k T_k(\tilde{\Lambda}) U^Tx \\ = \sum^{K}_{k=0} \theta'_k U T_k(\tilde{\Lambda} )U^T x \\ = \sum^{K}_{k=0} \theta'_k T_k(U\tilde{\Lambda} U^T) x \\= \sum^{K}_{k=0} \theta'_k T_k(\tilde{L}) x gθx=Ugθ(Λ)UTxUk=0KθkTk(Λ~)UTx=k=0KθkUTk(Λ~)UTx=k=0KθkTk(UΛ~UT)x=k=0KθkTk(L~)x

其中: L ~ = 2 λ m a x L − I N \tilde{L}=\frac{2}{\lambda_{max}}L -I_N L~=λmax2LIN

1.2 限制阶数K=1

K = 1 K=1 K=1, 因为 T 0 ( x ) = 1 , T 1 ( x ) = x T_0(x)=1, T_1(x)=x T0(x)=1,T1(x)=x,则有

g θ ′ ∗ x = ∑ k = 0 K θ k ′ T k ( L ~ ) x ≈ ( θ 0 T 0 ( L ~ ) + θ 1 T 1 ( L ~ ) ) x = ( θ 0 + θ 1 L ~ ) x g_{\theta'} * x = \sum^{K}_{k=0} \theta'_k T_k(\tilde{L}) x \\ \approx (\theta_0T_0(\tilde{L})+\theta_1T_1(\tilde{L}))x \\ = (\theta_0+\theta_1\tilde{L})x gθx=k=0KθkTk(L~)x(θ0T0(L~)+θ1T1(L~))x=(θ0+θ1L~)x

其中: L ~ = 2 λ m a x L − I N \tilde{L}=\frac{2}{\lambda_{max}}L -I_N L~=λmax2LIN

1.3 假设 λ m a x = 2 \lambda_{max}=2 λmax=2

假设 λ m a x = 2 \lambda_{max}=2 λmax=2,则有 L ~ = L − I N \tilde{L}=L -I_N L~=LIN,有:
g θ ′ ∗ x = ( θ 0 + θ 1 L ~ ) x = ( θ 0 + θ 1 ( L − I N ) ) x g_{\theta'} * x = (\theta_0+\theta_1\tilde{L})x \\=(\theta_0+\theta_1 (L -I_N))x gθx=(θ0+θ1L~)x=(θ0+θ1(LIN))x

1.4 设 θ 0 , θ 1 \theta_0, \theta_1 θ0,θ1

θ 0 = − θ 1 \theta_0=-\theta_1 θ0=θ1,有
g θ ′ ∗ x = ( θ 0 + θ 1 ( L − I N ) ) x = θ ( I N − L + I N ) x = θ ( I N − ( I N − D − 1 / 2 A D − 1 / 2 ) + I N ) x = θ ( I N + D − 1 / 2 A D − 1 / 2 ) x g_{\theta'} * x =(\theta_0+\theta_1 (L -I_N))x \\=\theta(I_N-L+I_N)x \\=\theta(I_N-(I_N-D^{-1/2}AD^{-1/2})+I_N)x \\=\theta(I_N+D^{-1/2}AD^{-1/2})x gθx=(θ0+θ1(LIN))x=θ(INL+IN)x=θ(IN(IND1/2AD1/2)+IN)x=θ(IN+D1/2AD1/2)x

1.5 renormalization trick

在这里插入图片描述 g θ ′ ∗ x = θ ( I N + D − 1 / 2 A D − 1 / 2 ) x ≈ θ ( D ~ − 1 / 2 A ~ D ~ − 1 / 2 ) x g_{\theta'} * x =\theta(I_N+D^{-1/2}AD^{-1/2})x \\ \approx \theta(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2})x gθx=θ(IN+D1/2AD1/2)xθ(D~1/2A~D~1/2)x

1.6 总结

综上:
x ′ = g θ ′ ∗ x ≈ θ ( D ~ − 1 / 2 A ~ D ~ − 1 / 2 ) x x' = g_{\theta'} * x \approx \theta(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2})x x=gθxθ(D~1/2A~D~1/2)x

代入非线性方程,有:
x ( k + 1 ) = σ ( w x ) ≈ σ ( w ( D ~ − 1 / 2 A ~ D ~ − 1 / 2 ) x k ) x_{(k+1)}=\sigma(wx) \\\approx\sigma(w(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2})x_{k}) x(k+1)=σ(wx)σ(w(D~1/2A~D~1/2)xk)

对于特征矩阵 X X X
X ( k + 1 ) ≈ σ ( ( D ~ − 1 / 2 A ~ D ~ − 1 / 2 ) Θ X k ) X_{(k+1)}\approx\sigma((\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2})\Theta X_{k}) X(k+1)σ((D~1/2A~D~1/2)ΘXk)

2.SGC

2.1一阶切比雪夫滤波器

在GCN中,经过近似,一阶(K=1)切比雪夫滤波器近似为传播矩阵:
S 1 − o r d e r = I N + D − 1 / 2 A D − 1 / 2 S_{1-order} =I_N+D^{-1/2}AD^{-1/2} S1order=IN+D1/2AD1/2
由于 L = I N − D − 1 / 2 A D − 1 / 2 L=I_N-D^{-1/2}AD^{-1/2} L=IND1/2AD1/2, 因此有
S 1 − o r d e r = 2 I N − L S_{1-order}=2I_N-L S1order=2INL

x ′ = S 1 − o r d e r    x = ( I N + D − 1 / 2 A D − 1 / 2 ) x = ( 2 I N − L ) x = ( 2 I N − U Λ U T ) x = ( 2 U U − 1 − U Λ U T ) x = U ( 2 I − Λ ) U T x'=S_{1-order} \;x \\=(I_N+D^{-1/2}AD^{-1/2}) x \\=(2I_N-L)x \\=(2I_N-U\Lambda U^T)x \\=(2UU^{-1}-U\Lambda U^T)x \\=U(2I-\Lambda)U^T x=S1orderx=(IN+D1/2AD1/2)x=(2INL)x=(2INUΛUT)x=(2UU1UΛUT)x=U(2IΛ)UT
其中,由于L是实对称矩阵,因此有 U T = U − 1 U^T=U^{-1} UT=U1

由此可得:相当于滤波函数为
g θ ( Λ ) = 2 I − Λ g_\theta(\Lambda)=2I-\Lambda gθ(Λ)=2IΛ
也即
g θ ( λ ) = 2 − λ g_\theta(\lambda)=2-\lambda gθ(λ)=2λ
其中, λ \lambda λ是拉普拉斯矩阵 L L L的特征值,表示频率

在经过K次累积后(K层网络),有
g θ ( λ ) K = ( 2 − λ ) K g_\theta(\lambda)^K=(2-\lambda)^K gθ(λ)K=(2λ)K
其函数图像为

在这里插入图片描述

2.2 增强正则化邻接矩阵

当GCN采用renormalization trick策略后,传播矩阵由 S 1 − o r d e r S_{1-order} S1order改为 S ~ a d j \tilde{S}_{adj} S~adj,其中:
S ~ a d j = D ~ − 1 / 2 A ~ D ~ − 1 / 2 \tilde{S}_{adj} = \tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2} S~adj=D~1/2A~D~1/2 其中 A ~ = A + I \tilde{A}=A+I A~=A+I, D ~ = D + I \tilde{D}=D+I D~=D+I
相应的,定义增强正则化矩阵 L ~ = I N − D ~ − 1 / 2 A ~ D ~ − 1 / 2 \tilde{L}=I_N-\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2} L~=IND~1/2A~D~1/2, 其特征值为 λ ~ \tilde{\lambda} λ~

相应的,使用 S ~ a d j \tilde{S}_{adj} S~adj做传播矩阵,有

x ′ = S ~ a d j    x = ( D ~ − 1 / 2 A ~ D ~ − 1 / 2 ) x = ( I N − L ~ ) x = ( I N − U Λ ~ U T ) x = ( U U − 1 − U Λ ~ U T ) x = U ( I − Λ ~ ) U T x'=\tilde{S}_{adj} \;x \\= (\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2})x \\=(I_N-\tilde{L})x \\=(I_N-U\tilde{\Lambda} U^T)x \\=(UU^{-1}-U\tilde{\Lambda} U^T)x \\=U(I-\tilde{\Lambda})U^T x=S~adjx=(D~1/2A~D~1/2)x=(INL~)x=(INUΛ~UT)x=(UU1UΛ~UT)x=U(IΛ~)UT

也即
g θ ( λ ) = 1 − λ ~ g_\theta(\lambda)=1-\tilde{\lambda} gθ(λ)=1λ~
其中, λ \lambda λ是拉普拉斯矩阵 L L L的特征值,表示频率

在经过K次累积后(K层网络),有
g θ ( λ ~ ) K = ( 1 − λ ~ ) K g_\theta(\tilde{\lambda})^K=(1-\tilde{\lambda})^K gθ(λ~)K=(1λ~)K

SGC证明:
0 = λ 0 < λ n < λ n ~ < λ 0=\lambda_0<\lambda_n<\tilde{\lambda_n}<\lambda 0=λ0<λn<λn~<λ
因此有图像

在这里插入图片描述或句话说,renormalization trick策略使得传播矩阵的最大特征值变小了,在1.6左右,而不是原先的2

2.3 正则化邻接矩阵

为说明其优点,可以先考虑 S a d j = D − 1 / 2 A D − 1 / 2 S_{adj}=D^{-1/2}AD^{-1/2} Sadj=D1/2AD1/2做传播矩阵,有
x ′ = S a d j    x = ( D − 1 / 2 A D − 1 / 2 ) x = ( I N − L ) x = U ( I − Λ ) U T x'=S_{adj} \;x \\= (D^{-1/2}AD^{-1/2})x \\=(I_N-L)x \\=U(I-\Lambda)U^T x=Sadjx=(D1/2AD1/2)x=(INL)x=U(IΛ)UT

也即
g θ ( λ ) = 1 − λ g_\theta(\lambda)=1-\lambda gθ(λ)=1λ

在经过K次累积后(K层网络),有
g θ ( λ ) K = ( 1 − λ ) K g_\theta(\lambda)^K=(1-\lambda)^K gθ(λ)K=(1λ)K

综上,三种传播矩阵 S 1 − o r d e r S_{1-order} S1order, S a d j S_{adj} Sadj, S ~ a d j \tilde{S}_{adj} S~adj做传播矩阵,分别有滤波函数为

在这里插入图片描述

FAGCN

设计两个传播矩阵:
F L = α I + D − 1 / 2 A D − 1 / 2 = ( α + 1 ) I − L \mathcal{F}_L=\alpha I+D^{-1/2}AD^{-1/2} \\=(\alpha+1)I-L FL=αI+D1/2AD1/2=(α+1)IL

F L = α I − D − 1 / 2 A D − 1 / 2 = ( α − 1 ) I + L \mathcal{F}_L=\alpha I-D^{-1/2}AD^{-1/2} \\=(\alpha-1)I+L FL=αID1/2AD1/2=(α1)I+L

分别相当于滤波函数

g 1 ( λ ) = ( 1 − λ + α ) g1(\lambda)=(1-\lambda+\alpha) g1(λ)=(1λ+α) g 2 ( λ ) = ( λ − 1 + α ) g2(\lambda)=(\lambda-1+\alpha) g2(λ)=(λ1+α)

其图像分别为
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值