【机器学习】深剖L1与L2权重正则化
前言
深度学习优化中的损失函数 L \mathcal{L} L通常由两部分组成,经验损失 L e m p \mathcal{L_{emp}} Lemp与正则损失 Ω ( f ) \mathcal{\Omega(f)} Ω(f),可以描述如下: L = L e m p + λ Ω ( f ) \mathcal{L}=\mathcal{L_{emp}}+\lambda\mathcal{\Omega(f)} L=Lemp+λΩ(f)经验损失尽可能地拟合数据集,从数据集中挖掘规则,然而由于数据集采样的随机性与有限性,经验分布无法准确描述数据生成分布,容易导致过拟合问题的发生。正则化损失编码了我们对模型、问题的先验知识,体现了我们对模型的归纳偏好,致力于提高模型的泛化能力。综合两种损失,即可以挖掘数据提供的信息避免过拟合,又可以充分利用人们的先验知识提升泛化性能。
正则损失通常可以分为两类:一般性的正则损失(如L1,L2正则化、奥卡姆剃刀原则、最大熵原则),领域相关的正则损失。本文重点描述L1、L2正则损失。
概念
L1正则损失: Ω ( f ) = ∑ θ ∣ θ ∣ \mathcal{\Omega(f)}=\sum\limits_{\theta}|\theta| Ω(f)=θ∑∣θ∣
L2正则损失: Ω ( f ) = ∑ θ ∣ ∣ θ ∣ ∣ 2 2 \mathcal{\Omega(f)}=\sum\limits_{\theta}||\theta||_2^2 Ω(f)=θ∑∣∣θ∣∣22
特点
L1归纳偏好:学习到的模型权重稀疏
L2归纳偏好:学习到的模型权重平滑
理解
参数的极大似然估计
参数估计的方式有矩估计、极大似然估计、贝叶斯估计。机器学习常用的为后两者。极大似然估计认为参数是确定的值,并把再当前参数配置下样本的发生概率作为当前参数配置的似然,然后最大化参数的似然,即 arg max θ P ( X ∣ θ ) \arg\max\limits_{\theta} P(X|\theta) argθmaxP(X∣θ),然后基于学到的参数来预测。贝叶斯估计认为参数是服从先验分布的随机变量,给定当前观测 X X X下,可以获得对参数的进一步认知,得到参数的后验分布 P ( θ ∣ X ) P(\theta|X) P(θ∣X),并基于参数的后验分布做预测。由于贝叶斯估计考虑对参数的先验知识,所以通常情况下贝叶斯估计要优于极大似然估计,但是贝叶斯决策是基于参数的后验分布来决策的,所以计算量较大。通过综合两者的优点可以得到参数的最大后验概率估计,即 arg max θ P ( θ ∣ X ) \arg\max\limits_{\theta} P(\theta|X) argθmaxP(θ∣X)。进一步,
arg max θ P ( θ ∣ X ) = arg max θ P ( X ∣ θ ) P ( θ ) P ( X ) = arg max θ P ( X ∣ θ ) P