基于图像处理的中国象棋识别系统及方法与流程边缘计算

本文介绍了如何利用图像处理技术和边缘计算开发中国象棋识别系统。系统通过拍摄棋盘图像,进行图像预处理、棋盘检测、棋子分割和识别,最终实现棋局记录和计算。采用卷积神经网络进行棋子分类,并提供源代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中国象棋是一种古老而复杂的棋类游戏,因其独特的棋盘和棋子设计而广受欢迎。在现代科技的推动下,我们可以利用图像处理技术开发出智能的中国象棋识别系统。本文将介绍一种基于图像处理和边缘计算的中国象棋识别系统的方法与流程,并提供相应的源代码。

系统概述:
该系统旨在通过拍摄棋盘图像,自动识别并分析棋盘上的棋子位置,以实现自动化的中国象棋棋局记录和计算。系统的核心是图像处理算法和边缘计算技术,结合使用可以快速准确地识别出棋盘和棋子。

系统流程:

  1. 图像采集:使用摄像设备或者手机摄像头拍摄棋盘图像,并将图像输入到系统中。

  2. 图像预处理:对采集到的图像进行预处理,包括图像去噪、灰度化、二值化等操作,以提高后续处理的效果。

  3. 棋盘检测:通过图像处理算法,检测出棋盘的位置和方向。可以使用霍夫变换等技术来检测直线,找到棋盘的边界。

  4. 棋子分割:在检测到的棋盘位置上,利用图像分割算法将棋子从背景中分离出来。可以使用阈值分割、边缘检测等技术来实现。

  5. 棋子识别:对分割得到的棋子图像进行特征提取和分类,以确定每个棋子的类型和位置。可以使用机器学习算法,如卷积神经网络(CNN)来训练模型并进行识别。

  6. 棋局记录和计算:根据识别得到的棋

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值