bzoj1492 [NOI2007]货币兑换Cash(斜率优化+CDQ分治)

这个大坑,终于填上了=,=
首先理论来自论文,点此查看
题目很长。。耐心读。。首先我们注意到这句话:

必然存在一种最优的买卖方案满足:
每次买进操作使用完所有的人民币;每次卖出操作卖出所有的金券。

分析一下这句话:首先是卖出假设我们手中有一堆A券和一堆B券 选择在一些天数分天卖出,那么这些天中一定有一天,卖出同样比例的证券可以获得的钱最多,我们选择这一天全部卖出 一定比分天卖出更优。

然后是买入 由于卖出是一天 对于任意一天卖出 我分开买 那么一定有一天花同样的钱买入证券后在那一天卖出获利最大,选择在那一天全部买入 一定比分天买入更优

故买入和卖出都是在一天完成,而且都是倾巢买入/卖出。

因此不难确立动态规划的方程:

f[i] f [ i ] 表示前 i i 天的最大收益。

第j天将手中的钱全部换掉,可以换成的B券数目
Y(j)=f[j]1Rate[j]A[j]+B[j]

第j天将手中的钱全部换掉,可以换成的A券数目
X(j)=f[j]Rate[j]Rate[j]A[j]+B[j] X ( j ) = f [ j ] ∗ R a t e [ j ] R a t e [ j ] ∗ A [ j ] + B [ j ]

第i天将第j天买的AB券全部卖掉: A[i]X(j)+B[i]Y(j) A [ i ] ∗ X ( j ) + B [ i ] ∗ Y ( j )
f[i]=max{f[i1],A[i]X(j)+B[i]Y(j)} f [ i ] = m a x { f [ i − 1 ] , A [ i ] ∗ X ( j ) + B [ i ] ∗ Y ( j ) }

这样就有了一个 O(n2) O ( n 2 ) 的算法。(f[i]表示意思不太一样,这样好写)

O(n2) O ( n 2 )

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
#define N 100010
int n,s;
double A[N],B[N],Rate[N],f[N],ans=0;//f[i]--第i天最多能买多少A券。 
int main(){
    freopen("a.in","r",stdin);
    scanf("%d%d",&n,&s);
    for(int i=1;i<=n;++i) scanf("%lf%lf%lf",&A[i],&B[i],&Rate[i]);
    f[1]=s*Rate[1]/(A[1]*Rate[1]+B[1]);
    for(int i=2;i<=n;++i){
        for(int j=1;j<i;++j)
            ans=max(ans,f[j]*A[i]+f[j]/Rate[j]*B[i]);
        f[i]=ans*Rate[i]/(A[i]*Rate[i]+B[i]);
    }
    printf("%.3lf",ans);
    return 0;
}

然而这样是过不了的,我们很自然的想到斜率优化.
设k1< k2且k1优于k2,
B[i](Y[k1]Y[k2])>A[i](X[k2]X[k1]) B [ i ] ∗ ( Y [ k 1 ] − Y [ k 2 ] ) > A [ i ] ∗ ( X [ k 2 ] − X [ k 1 ] ) ,我们发现正负难以判定。。不如假设X[k2]>X[k1],即X单增,则 Y[k2]Y[k1]X[k2]X[k1]<A[i]B[i] Y [ k 2 ] − Y [ k 1 ] X [ k 2 ] − X [ k 1 ] < − A [ i ] B [ i ] ,然而-A[i]/B[i]并不是单调的。。。这就很讨厌了。。

简单好写的单调队列废掉了。怎么办呢?神犇表示拿平衡树维护一个凸线不就好了么。orz5k+的代码。难道我就只能这样去码平衡树了么。。不,你还可以用神奇的CDQ分治。

CDQ分治的思想是f[i]的决策点一定在0~i-1之中,于是我们分治,其中对于每一层递归[l,r],二分出一个中点mid,然后递归求出[l,mid]中所有的f值,对[l,mid]中的点建立凸包,用[mid+1,r]中的所有元素的斜率去询问,得到[l,mid]中所有的点对[mid+1,r]中所有点的影响,然后递归求出[mid+1,r]中的所有f值,其中当我们递归到任意[i,i]时,0~i-1中所有点对这个点的影响都已经计算过,于是直接得出f[i]即可。

大体思路可以见论文,我就不在赘述了。只在此说点自己的理解。我们面对的问题无非就是a[i]/b[i]不单调,那我们给他排个序强制单调不就好了。。可是这样决策又不连续了,那我能不能把决策的影响分开统计?前一半的值是会影响后一半的,所以我们递归处理,更新影响。

时间复杂度为 T(n)=2T(n/2)+O(n) T ( n ) = 2 T ( n / 2 ) + O ( n ) ,因此算法的时间复杂度为 O(nlog2n) O ( n l o g 2 n )

用栈维护上凸壳版

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
#define N 100010
#define inf 1e20
#define eps 1e-8
int n,top=0,st[N];
double f[N];
struct point{
    double a,b,rate,k,x,y;int id;
}p[N],t[N];
inline bool cmp(point x,point y){
    return x.k>y.k;
}
inline double slope(int k1,int k2){
    if(!k2) return -inf;
    if(fabs(p[k1].x-p[k2].x)<eps) return inf;
    return (p[k2].y-p[k1].y)/(p[k2].x-p[k1].x);
}
void solve(int l,int r){//返回时,保证f[l]..f[r]均已求出 
    if(l==r){
        f[l]=max(f[l],f[l-1]);//第l天最多多少钱 
        p[l].y=f[l]/(p[l].a*p[l].rate+p[l].b);//第l天最多买b券 
        p[l].x=p[l].y*p[l].rate;return;//第l天最多买a券  
    }
    int mid=(l+r)>>1,l1=l,l2=mid+1,j=1;
    for(int i=l;i<=r;++i){//保证l...mid就是原来的l..mid,但是是按k值降序排序的 
        if(p[i].id<=mid) t[l1++]=p[i];
        else t[l2++]=p[i];
    }
    memcpy(p+l,t+l,sizeof(p[0])*(r-l+1));
    solve(l,mid);
    top=0;
    for(int i=l;i<=mid;++i){//构造上凸包,使斜率单降。 
        while(top>1&&slope(st[top],i)>slope(st[top-1],st[top])) --top;
        st[++top]=i;
    }st[++top]=0;//在后面补个0,防止越界 
    for(int i=mid+1;i<=r;++i){//mid+1...r是原来的mid+1...r按k值降序排列的,满足单调性,且l..mid均为它的决策 
        while(j<top&&slope(st[j],st[j+1])>p[i].k) ++j;
        f[p[i].id]=max(f[p[i].id],p[i].a*p[st[j]].x+p[i].b*p[st[j]].y);//找到在l..mid中的最优决策,更新。 
    }
    solve(mid+1,r);//递归解决右面。 
    l1=l,l2=mid+1;
    for(int i=l;i<=r;++i){//保证返回时l..r是按x升序排序的(为了满足我们的假设斜率单调) 
        if(l1<=mid&&(l2>r||p[l1].x<p[l2].x)) t[i]=p[l1++];
        else t[i]=p[l2++];
    }
    memcpy(p+l,t+l,sizeof(p[0])*(r-l+1));
}
int main(){
//  freopen("a.in","r",stdin);
    scanf("%d%lf",&n,&f[0]);
    for(int i=1;i<=n;++i){
        scanf("%lf%lf%lf",&p[i].a,&p[i].b,&p[i].rate);
        p[i].k=-p[i].a/p[i].b;p[i].id=i;
    }sort(p+1,p+n+1,cmp);//按k值降序排序 
    solve(1,n);
    printf("%.3lf",f[n]);
    return 0;
}

我个人觉得还是单调队列维护下凸壳顺手一些。。。

用单调队列维护下凸壳版

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
#define N 100010
#define inf 1e20
#define eps 1e-8
int n,top=0,q[N],h=1,t=0;
double f[N];
struct point{
    double a,b,rate,k,x,y;int id;
}p[N],pp[N];
inline bool cmp(point x,point y){
    return x.k<y.k;
}
inline double slope(int k1,int k2){
    if(!k2) return inf;
    if(fabs(p[k1].x-p[k2].x)<eps) return -inf;
    return (p[k1].y-p[k2].y)/(p[k2].x-p[k1].x);
}
void solve(int l,int r){
        f[l]=max(f[l],f[l-1]);
        p[l].y=f[l]/(p[l].a*p[l].rate+p[l].b);
        p[l].x=p[l].y*p[l].rate;return;
    }
    int mid=(l+r)>>1,l1=l,l2=mid+1;
    for(int i=l;i<=r;++i){
        if(p[i].id<=mid) pp[l1++]=p[i];
        else pp[l2++]=p[i];
    }
    memcpy(p+l,pp+l,sizeof(p[0])*(r-l+1));
    solve(l,mid);
    h=1,t=0;
    for(int i=l;i<=mid;++i){
        while(h<t&&slope(q[t],i)<slope(q[t-1],q[t])) --t;
        q[++t]=i;
    }
    for(int i=mid+1;i<=r;++i){
        while(h<t&&slope(q[h],q[h+1])<p[i].k) ++h;
        f[p[i].id]=max(f[p[i].id],p[i].a*p[q[h]].x+p[i].b*p[q[h]].y);
    }
    solve(mid+1,r);
    l1=l,l2=mid+1;
    for(int i=l;i<=r;++i){
        if(l1<=mid&&(l2>r||p[l1].x<p[l2].x)) pp[i]=p[l1++];
        else pp[i]=p[l2++];
    }
    memcpy(p+l,pp+l,sizeof(p[0])*(r-l+1));
}
int main(){
//  freopen("a.in","r",stdin);
    scanf("%d%lf",&n,&f[0]);
    for(int i=1;i<=n;++i){
        scanf("%lf%lf%lf",&p[i].a,&p[i].b,&p[i].rate);
        p[i].k=p[i].a/p[i].b;p[i].id=i;
    }sort(p+1,p+n+1,cmp);
    solve(1,n);
    printf("%.3lf",f[n]);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值