bzoj3829 [Poi2014]FarmCraft(树形dp+贪心)

304 篇文章 2 订阅
132 篇文章 0 订阅

f[x]表示x子树中最晚完成安装的时间的最小值。因为每条边只能走两遍,所以我们只能一个儿子一个儿子的遍历。
那么我们以何种顺序去遍历x的n个儿子呢?如果已经确定了一种顺序,那么
f[x]=max{k=1i1sz[k]2+f[i]+1|1<=i<=n}
对于i,j(i< j)两个位置的儿子,如果不交换比交换更优,则
max(k=1i1sz[k]2+f[i]+1,k=1j1sz[k]2+f[j]+1)<max(k=1i1sz[k]2+f[j]+1,k=1j1sz[k]2+f[i]+1)

max(f[i],sz[i]2+f[j])<max(f[j],sz[j]2+f[i])
以这个东西作为cmp即可。把儿子们排序后就是最优的了,计算答案即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 500010
inline char gc(){
    static char buf[1<<16],*S,*T;
    if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x*f;
}
int n,c[N],f[N],sz[N],a[N],h[N],num=0,fa[N];//f[x]-x子树中最晚完成安装的时间的最小值
struct edge{
    int to,next;
}data[N<<1];
inline bool cmp(int a,int b){return max(f[a],sz[a]*2+f[b])<max(f[b],sz[b]*2+f[a]);}
inline void dfs(int x){
    sz[x]=1;
    for(int i=h[x];i;i=data[i].next){
        int y=data[i].to;if(y==fa[x]) continue;
        fa[y]=x;dfs(y);sz[x]+=sz[y];
    }int tot=0;f[x]=c[x];
    for(int i=h[x];i;i=data[i].next){
        int y=data[i].to;if(y==fa[x]) continue;a[++tot]=y;
    }sort(a+1,a+tot+1,cmp);int tmp=0;
    for(int i=1;i<=tot;++i) f[x]=max(f[x],tmp*2+f[a[i]]+1),tmp+=sz[a[i]];
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();for(int i=1;i<=n;++i) c[i]=read();
    for(int i=1;i<n;++i){
        int x=read(),y=read();
        data[++num].to=y;data[num].next=h[x];h[x]=num;
        data[++num].to=x;data[num].next=h[y];h[y]=num;
    }dfs(1);
    printf("%d\n",max(f[1],(n-1)*2+c[1]));
    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值