【codeforces 1029E - Tree with Small Distances】【树形dp+思维+贪心】【用最少的连1的边使得树上每个点到1的距离不超过2】

8 篇文章 0 订阅
3 篇文章 0 订阅

【链接】:

https://codeforces.com/problemset/problem/1029/E

【题意】:

用最少的连1的边使得树上每个点到1的距离不超过2

【分析】:

离1最远的点需要连边的需求越大,从叶子节点考虑,肯定是父亲连边比叶子节点连边更优。父亲连边,改变父亲的父亲的距离,重复操作。在树形dp递归的过程中完成。

【代码】:

#include<bits/stdc++.h>
using namespace std;
#define ll long long 
const int maxn = 200005;
vector<int>v[maxn];
int dis[maxn];
int ans = 0;

void dfs(int cur, int pre, int cnt) {
	dis[cur] = cnt;
	int flag = 0;
	for (int y : v[cur]) {
		if (y == pre)continue;
		dfs(y, cur, cnt + 1);
		if (dis[y] > 2) {
			flag = 1;
			dis[cur] = 1;
			dis[pre] = 2;
		}
	}
	if (flag)ans++;
}

int main() {
	int n;
	scanf("%d", &n);
	n--;
	while (n--) {
		int x, y;
		scanf("%d%d", &x, &y);
		v[x].push_back(y);
		v[y].push_back(x);
	}
	dfs(1, -1 ,0);
	printf("%d\n", ans);
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值