bzoj4400 tjoi2012 桥(最短路树+线段树)

版权声明:转载附上原文地址即可~欢迎各位神犇来虐~ https://blog.csdn.net/Icefox_zhx/article/details/79965626

首先我们建出最短路树。
可以发现要删的边一定在最短路树上1-n的路径上。
我们考虑删掉一条边x-y,那么剩余的最短路一定是1-A-B-n的形式。
其中1-A一定是最短路上一部分,不能过边x-y,因此A一定不在y的子树里。
B-n一定是最短路上一部分,不能过边x-y,因此B一定在y的子树里。
而此时的最短路长度就是dis[A][0]+dis[B][1]+w[A][B]。

我们给每个点标深度,1-n路径上的点的深度从上到下依次递增,其余点的深度为与n的lca的深度。

我们考虑枚举每一条非树边A-B,他能贡献的合法的x-y,一定是一段区间的边,我们可以用线段树来维护区间取最小值。

最后要注意如果删掉任意一条边之后还是存在最短路,那么这个最短路树应该是不唯一的,删掉任意一条边均可。

这题居然卡spfa???再见qaq

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <utility>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 100010
#define pa pair<int,int>
inline char gc(){
    static char buf[1<<16],*S,*T;
    if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x*f;
}
int n,m,h[N],num=1,path[N],dis[N][2],tot=0,a[N],dep[N],ans[N],mx;
bool inq[N],mark[N<<1];
struct edge{
    int to,next,val;
}data[N<<2];
struct node{
    int mn;
}tr[N<<2];
inline void Dijkstra1(){
    priority_queue<pa,vector<pa>,greater<pa> >q;memset(dis,inf,sizeof(dis));
    q.push(make_pair(0,1));dis[1][0]=0;
    while(!q.empty()){
        int x=q.top().second;q.pop();
        if(inq[x]) continue;inq[x]=1;
        for(int i=h[x];i;i=data[i].next){
            int y=data[i].to;
            if(dis[x][0]+data[i].val<dis[y][0]){
                dis[y][0]=dis[x][0]+data[i].val;path[y]=i;
                q.push(make_pair(dis[y][0],y));
            }
        }
    }
}
inline void Dijkstra2(){
    priority_queue<pa,vector<pa>,greater<pa> >q;memset(inq,0,sizeof(inq));
    q.push(make_pair(0,n));dis[n][1]=0;
    while(!q.empty()){
        int x=q.top().second;q.pop();
        if(inq[x]) continue;inq[x]=1;
        for(int i=h[x];i;i=data[i].next){
            int y=data[i].to;
            if(dis[x][1]+data[i].val<dis[y][1]){
                dis[y][1]=dis[x][1]+data[i].val;
                q.push(make_pair(dis[y][1],y));
            }
        }
    }
}
inline void gao(){
    int x=n;a[++tot]=n;
    while(path[x]){mark[path[x]>>1]=1;x=data[path[x]^1].to;a[++tot]=x;}
    for(int i=1,j=tot;i<j;++i,--j) swap(a[i],a[j]);
    for(int i=1;i<=tot;++i) dep[a[i]]=i;
    for(int i=1;i<=n;++i){
        if(dep[i]) continue;
        for(x=i;!dep[x];x=data[path[x]^1].to);
        for(int xx=i;!dep[xx];xx=data[path[xx]^1].to) dep[xx]=dep[x];
    }
}
inline void build(int p,int l,int r){
    tr[p].mn=inf;if(l==r) return;int mid=l+r>>1;
    build(p<<1,l,mid);build(p<<1|1,mid+1,r);
}
inline void change(int p,int l,int r,int x,int y,int val){
    if(x<=l&&r<=y){tr[p].mn=min(tr[p].mn,val);return;}
    int mid=l+r>>1;
    if(x<=mid) change(p<<1,l,mid,x,y,val);
    if(y>mid) change(p<<1|1,mid+1,r,x,y,val);
}
inline void pushdown(int p){
    tr[p<<1].mn=min(tr[p<<1].mn,tr[p].mn);
    tr[p<<1|1].mn=min(tr[p<<1|1].mn,tr[p].mn);
}
inline void ask(int p,int l,int r){
    if(l==r){ans[l]=tr[p].mn;mx=max(mx,ans[l]);return;}
    int mid=l+r>>1;pushdown(p);
    ask(p<<1,l,mid);ask(p<<1|1,mid+1,r);
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();m=read();
    for(int i=1;i<=m;++i){
        int x=read(),y=read(),val=read();
        data[++num].to=y;data[num].next=h[x];h[x]=num;data[num].val=val;
        data[++num].to=x;data[num].next=h[y];h[y]=num;data[num].val=val;
    }Dijkstra1();Dijkstra2();gao();build(1,1,n);
    for(int i=1;i<=m;++i){
        if(mark[i]) continue;int x=data[i<<1].to,y=data[i<<1|1].to;
        if(dep[x]==dep[y]) continue;if(dep[x]>dep[y]) swap(x,y);
        change(1,1,tot-1,dep[x],dep[y]-1,dis[x][0]+data[i<<1].val+dis[y][1]);
    }ask(1,1,tot-1);int cnt=0;
    for(int i=1;i<=tot-1;++i) if(ans[i]==mx) ++cnt;
    if(mx==dis[n][0]) cnt=m; 
    printf("%d %d\n",mx,cnt);
    return 0;
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页