均方误差、均方根误差

均方误差

该指标计算的是拟合数据和原始数据对应样本点的误差的 平方和的均值,其值越小说明拟合效果越好

metrics.mean_squared_error(y_true, 
                           y_pred,                         
                           sample_weight=None, 
                           multioutput=’uniform_average’)

参数:

y_true:真实值。

y_pred:预测值。

sample_weight:样本权值。

multioutput:多维输入输出,默认为’uniform_average’,计算所有元素的均方误差,返回为一个标量;也可选‘raw_values’,计算对应列的均方误差,返回一个与列数相等的一维数组。

from sklearn.metrics import mean_squared_error
y_true = [3, -1, 2, 7]
y_pred = [2, 0.0, 2, 8]
mean_squared_error(y_true, y_pred)
# 结果为:0.75
y_true = [[0.5, 1],[-1, 1],[7, -6]]
y_pred = [[0, 2],[-1, 2],[8, -5]]
mean_squared_error(y_true, y_pred)
# 结果为:0.7083333333333334
mean_squared_error(y_true, y_pred, multioutput='raw_values')
# 结果为:array([0.41666667, 1.        ])
mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7])
# 结果为:0.825
# multioutput=[0.3, 0.7]返回将array([0.41666667, 1.        ])按照0.3*0.41666667+0.7*1.0计算所得的结果
mean_squared_error(y_true, y_pred, multioutput='uniform_average')
# 结果为:0.7083333333333334

RMSE(均方根误差)

即 均方误差开平方

RMSE,全称是Root Mean Square Error,即均方根误差,它表示预测值和观测值之间差异(称为残差)的样本标准差。均方根误差为了说明样本的离散程度。做非线性拟合时, RMSE越小越好。

标准差与均方根误差的区别

  • 标准差是用来衡量一组数自身的离散程度,而均方根误差是用来衡量观测值同真值之间的偏差,它们的研究对象和研究目的不同,但是计算过程类似。
  • 均方根误差算的是观测值与其真值,或者观测值与其模拟值之间的偏差,而不是观测值与其平均值之间的偏差。

(原博还有很多常用模型介绍:sklearn.metrics.accuracy_score用法 · python 学习记录

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值