对于非计算机科学与技术专业的同学来说(比如我),刚开始接触机器学习/深度学习,构建可用的环境会遇到很多问题,记录一些从小白角度积累的经验。
如果我们需要在环境里打造一个工作流,比如需要先使用某某不出名的小众wheel,然后我们又需要tensorflow,因此在 `pip install tensorflow==x.x.x` 之前可能已经安装了numpy,pandas,matplotlib,scipy等常用工具包。此时再安装tensorflow,它所使用的numpy,pandas,matplotlib,scipy很可能跟你原先安装的numpy,pandas,matplotlib,scipy版本有冲突。然后运行代码报错。反之亦然,你先安装的tensorflow使用的numpy,pandas,matplotlib,scipy与你要安装的别的wheel的numpy,pandas,matplotlib,scipy版本有冲突。
此时就去找到两个wheel间版本重合的部分,避免粗鲁地卸来卸去,装来装去,瞎试最浪费时间。
使用```conda search XXX```查看版本列表。