Task02:基于决策树的分类预测
猫狗分类
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
import os
import shutil
dataset_dir = './do_test/test/'
train_cats_dir = './do_test/train/cats/'
train_dogs_dir = './do_test/train/dogs/'
validation_cats_dir = './do_test/validation/cats/'
validation_dogs_dir = './do_test/validation/dogs/'
if not os.path.exists(dataset_dir):
os.makedirs(dataset_dir)
if not os.path.exists(train_cats_dir):
os.makedirs(train_cats_dir)
if not os.path.exists(train_dogs_dir):
os.makedirs(train_dogs_dir)
if not os.path.exists(validation_cats_dir):
os.makedirs(validation_cats_dir)
if not os.path.exists(validation_dogs_dir):
os.makedirs(validation_dogs_dir)
cat_count = 0
dog_count