机器学习猫狗分类

该博客介绍了如何使用决策树进行猫狗分类任务,详细阐述了分类预测的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Task02:基于决策树的分类预测

猫狗分类

from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from keras.optimizers import RMSprop

from keras.preprocessing.image import ImageDataGenerator

# 下面的一部分是进行数据预处理
import os
import shutil

dataset_dir = './do_test/test/'
train_cats_dir = './do_test/train/cats/'
train_dogs_dir = './do_test/train/dogs/'
validation_cats_dir = './do_test/validation/cats/'
validation_dogs_dir = './do_test/validation/dogs/'

### 数据搬移,构建训练集验证集
if not os.path.exists(dataset_dir):
    os.makedirs(dataset_dir)
if not os.path.exists(train_cats_dir):
    os.makedirs(train_cats_dir)
if not os.path.exists(train_dogs_dir):
    os.makedirs(train_dogs_dir)
if not os.path.exists(validation_cats_dir):
    os.makedirs(validation_cats_dir)
if not os.path.exists(validation_dogs_dir):
    os.makedirs(validation_dogs_dir)

cat_count = 0
dog_count 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值