锚框与锚框类别信息的确定

博客介绍目标检测算法,会在输入图像采样大量区域判断目标并调整边界框。还提及下采样和上采样的目的及影响。重点阐述锚框,以每个像素为中心生成不同大小和宽高比的边界框。同时说明了确定锚框类别信息的方法,通过设定IoU阈值划分目标和背景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.锚框
目标检测算法通常会在输入图像中采样大量的区域,然后判断这些区域中是否包含感兴趣的目标,并调整区域边缘从而更准确地预测目标的真实边界框(ground-truth bounding box)。

下采样(subsampled)(或称为缩小图像 或降采样(downsampled))的主要目的有两个:1、使得图像符合显示区域的大小;2、生成对应图像的缩略图(最直观的理解,所以深度学习领域对被卷积核之后的特征图叫下采样,从尺寸角度来看,大部分确实会缩小尺寸)。

上采样(upsampling) (或称为放大图像(分割领域,GAN领域直观理解的尺寸也是扩大了) 或图像插值(interpolating))的主要目的是放大原图像,从而可以显示在更高分辨率的显示设备上。对图像的缩放操作并不能带来更多关于该图像的信息, 因此图像的质量将不可避免地受到影响。然而,确实有一些缩放方法能够增加图像的信息,从而使得缩放后的图像质量超过原图质量的。

锚框以每个像素为中心生成多个大小和宽高比(aspect ratio)不同的边界框。这些边界框被称为锚框(anchor box)。
2.锚框类别信息的确定
对于预先铺设的锚框,先要给出这些框的类别信息,才能让模型学着去预测每个锚框是否对应着一个目标物体。但是这些锚框中有很多是和图片中我们要检测的目标完全没有交集或者有很小的交集,如何划分他们是目标还是背景呢?我们的做法是,设定一个IoU阈值,例如IoU=0.5,与图片中目标的IoU<0.5的锚框,这些框我们将其划分为背景,IoU>=0.5的被归到目标锚框,通过这样划分,得到供模型学习的ground truth信息。
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值