基础拓扑学笔记(1)——欧拉定理

本文是基础拓扑学笔记的第一部分,主要介绍了欧拉定理及其应用。内容涵盖顶点数、棱数和面数的关系,凹多面体与凸多面体的区分,以及欧拉定理在有洞的几何体中的推广。通过实例探讨了欧拉定理的本质,强调其与几何形状无关,而与几何结构有关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本拓扑学=1/3点集拓扑+2/3 代数拓扑
微分几何 微分流形

1.顶点数-棱数+面数 = 2

在这里插入图片描述
V=Vertex 顶点数 E= Edge 边数 F=Face 面数

2.凹多面体与凸多面体

多面体:若干个多边形沿着边粘出来的曲面所围成的立体、

在这里插入图片描述

凸多面体的任何截面都是凸多边形,与凹多面体相反。

把凸多面体的任何一个面伸展成平面,它的所有其他各面都在这个平面的同侧。

在这里插入图片描述

3.欧拉定理的弱化版本(凸多面体)

在这里插入图片描述
最后一个计算没有意义因为顶面的形状不算是多边形,也就说其形状并非多面体。为满足多面体的定义当然不满足欧拉定理<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值