Best Time to Buy and Sell Stock III

leetcode中的股票问题(3)

来看看系列第三题咯

原题

Say you have an array for which the ith element is the price of a given stock on day i .
Design an algorithm to find the maximum profit. You may complete at most two transactions.
翻译:同样,一个表示每天价格的数组,同样要获得最大的收益,但是最多只允许你进行两手交易哟~

问题分析

相比于最多进行一手交易,这个问题就有点抽象啦,还是先上图:
股票趋势图
我们直观地猜一猜,大概也能猜出个答案吧~
股票趋势图
感觉得到,但是怎样去理解这两手交易呢?我的第一想法也是“分而治之”——对于某个坐标,左边做多允许一手,右边也是最多允许一手,这样一来,不就转化成两个“Best Time to Buy and Sell Stock I”中的子问题了吗?
但是问题来了,对于坐标i,其左边最多允许一手,按照“Best Time to Buy and Sell Stock I”中的方法,在O(n)的时间内可以做到,从左往右扫一遍即可,但是其右边的收益却要每次从i开始扫到末尾,复杂度是 O(n2) ,是都不用试,肯定通不过大数据测试。
去Discuss上参考了别人的想法,发现从右往左扫可以解决这个问题,的确,我只要记住从右到目前的最大值,然后只要现价足够低,就更新最大收益的标记,基本和从左往右扫是相反的过程。
然后就简单啦,对于所有的i,把左右最大收益相加,取其中最大的就OK啦~

代码

public int maxProfit(int[] prices) {

    if(prices.length < 2)
    {
        return 0;
    }
    //left to right scan
    int[] left = new int[prices.length];
    //right to left scan
    int[] right = new int[prices.length];

    //for index i, find the max profit can be made
    //if at most one transaction can be completed before day i
    int minTag = prices[0];
    left[0] = 0;
    for(int i = 1; i < prices.length - 1; i++)
    {
        left[i] = Math.max(left[i - 1], prices[i] - minTag);
        minTag = Math.min(minTag,prices[i]);
    }

    //for index i, find the max profit can be made
    //if at most one transaction can be completed after day i
    int maxTag = prices[prices.length - 1];
    right[prices.length - 1] = 0;
    for(int i = prices.length - 2; i >= 0; i--)
    {
        right[i] = Math.max(right[i + 1], maxTag - prices[i]);
        maxTag = Math.max(maxTag,prices[i]);
    }

    int profit = 0;
    for(int i = 0; i < prices.length; i++)
    {
        //find the maximun profit
        if(left[i] + right[i] > profit)
        {
            profit = left[i] + right[i];
        }
    }
    return profit;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值