T10打卡-学习笔记

配置环境

import matplotlib.pyplot as plt
import numpy as np
#隐藏警告
import warnings
warnings.filterwarnings('ignore')

from tensorflow.keras import layers
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]],"GPU")

# 打印显卡信息,确认GPU可用
print(gpus)
[]

加载数据

data_dir   = r"C:\Users\11054\Desktop\kLearning\t9_learning\data"
img_height = 224
img_width  = 224
batch_size = 32

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.3,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 3400 files belonging to 2 classes.
Using 2380 files for training.
  • preprocessing.image_dataset_from_directory作用
  • 将文件夹中的数据加载到tf.data.Dataset中,且加载的同时会打乱数据

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.3,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 3400 files belonging to 2 classes.
Using 2380 files for training.
val_batches = tf.data.experimental.cardinality(val_ds)
test_ds     = val_ds.take(val_batches // 5)
val_ds      = val_ds.skip(val_batches // 5)

print('Number of validation batches: %d' % tf.data.experimental.cardinality(val_ds))
print('Number of test batches: %d' % tf.data.experimental.cardinality(test_ds))
Number of validation batches: 60
Number of test batches: 15

显示数据类

class_names = train_ds.class_names
print(class_names)
['cat', 'dog']
AUTOTUNE = tf.data.AUTOTUNE

def preprocess_image(image,label):
    return (image/255.0,label)

# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
test_ds  = test_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)

train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

显示数据

plt.figure(figsize=(15, 10))  # 图形的宽为15高为10

for images, labels in train_ds.take(1):
    for i in range(8):

        ax = plt.subplot(5, 8, i + 1)
        plt.imshow(images[i])
        plt.title(class_names[labels[i]])

        plt.axis("off")

在这里插入图片描述


# 数据增强
data_augmentation = tf.keras.Sequential([
  tf.keras.layers.RandomFlip("horizontal_and_vertical"),
  tf.keras.layers.RandomRotation(0.2),
])
  • 第一个层表示进行随机的水平和垂直翻转,而第二个层表示按照 0.2 的弧度值进行随机旋转。
# Add the image to a batch.
image = tf.expand_dims(images[i], 0)
plt.figure(figsize=(8, 8))
for i in range(9):
    augmented_image = data_augmentation(image)
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(augmented_image[0])
    plt.axis("off")

在这里插入图片描述

增强方式一

model = tf.keras.Sequential([
  data_augmentation,
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
])

增强方式二

batch_size = 32
AUTOTUNE = tf.data.AUTOTUNE

def prepare(ds):
    ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)
    return ds
train_ds = prepare(train_ds)

训练模型

model = tf.keras.Sequential([
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(len(class_names))
])
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
epochs=20
history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)
Epoch 1/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m18s[0m 215ms/step - accuracy: 0.5271 - loss: 0.9259 - val_accuracy: 0.6942 - val_loss: 0.6044
Epoch 2/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m16s[0m 210ms/step - accuracy: 0.7156 - loss: 0.5635 - val_accuracy: 0.8395 - val_loss: 0.3700
Epoch 3/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m20s[0m 200ms/step - accuracy: 0.8441 - loss: 0.3581 - val_accuracy: 0.8858 - val_loss: 0.2847
Epoch 4/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m15s[0m 197ms/step - accuracy: 0.8801 - loss: 0.2856 - val_accuracy: 0.9005 - val_loss: 0.2370
Epoch 5/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m21s[0m 201ms/step - accuracy: 0.9018 - loss: 0.2407 - val_accuracy: 0.9242 - val_loss: 0.1893
Epoch 6/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m15s[0m 200ms/step - accuracy: 0.9204 - loss: 0.2070 - val_accuracy: 0.9263 - val_loss: 0.2077
Epoch 7/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m15s[0m 199ms/step - accuracy: 0.9304 - loss: 0.1740 - val_accuracy: 0.9137 - val_loss: 0.2569
Epoch 8/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m15s[0m 202ms/step - accuracy: 0.9367 - loss: 0.1704 - val_accuracy: 0.9426 - val_loss: 0.1460
Epoch 9/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m21s[0m 198ms/step - accuracy: 0.9519 - loss: 0.1344 - val_accuracy: 0.9295 - val_loss: 0.1940
Epoch 10/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m15s[0m 200ms/step - accuracy: 0.9348 - loss: 0.1784 - val_accuracy: 0.9532 - val_loss: 0.1367
Epoch 11/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m21s[0m 200ms/step - accuracy: 0.9485 - loss: 0.1273 - val_accuracy: 0.9395 - val_loss: 0.1620
Epoch 12/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m15s[0m 194ms/step - accuracy: 0.9307 - loss: 0.1438 - val_accuracy: 0.9442 - val_loss: 0.1544
Epoch 13/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m21s[0m 190ms/step - accuracy: 0.9524 - loss: 0.1435 - val_accuracy: 0.9432 - val_loss: 0.1624
Epoch 14/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m16s[0m 207ms/step - accuracy: 0.9424 - loss: 0.1413 - val_accuracy: 0.9626 - val_loss: 0.1091
Epoch 15/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m16s[0m 202ms/step - accuracy: 0.9562 - loss: 0.1152 - val_accuracy: 0.9411 - val_loss: 0.1616
Epoch 16/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m16s[0m 207ms/step - accuracy: 0.9519 - loss: 0.1249 - val_accuracy: 0.9463 - val_loss: 0.1593
Epoch 17/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m16s[0m 208ms/step - accuracy: 0.9473 - loss: 0.1339 - val_accuracy: 0.9626 - val_loss: 0.1135
Epoch 18/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m16s[0m 212ms/step - accuracy: 0.9604 - loss: 0.1100 - val_accuracy: 0.9589 - val_loss: 0.1094
Epoch 19/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m20s[0m 205ms/step - accuracy: 0.9584 - loss: 0.1125 - val_accuracy: 0.9516 - val_loss: 0.1344
Epoch 20/20
[1m75/75[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m16s[0m 208ms/step - accuracy: 0.9539 - loss: 0.1224 - val_accuracy: 0.9668 - val_loss: 0.0874

评估模型

import matplotlib.pyplot as plt

plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()


在这里插入图片描述

loss, acc = model.evaluate(test_ds)
print("Accuracy", acc)
[1m15/15[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 68ms/step - accuracy: 0.9499 - loss: 0.1181
Accuracy 0.9624999761581421

模型预测

import numpy as np

# 采用加载的模型(new_model)来看预测结果
plt.figure(figsize=(18, 3))  # 图形的宽为18高为5
plt.suptitle("预测结果展示")

for images, labels in val_ds.take(1):
    for i in range(8):
        ax = plt.subplot(1,8, i + 1)

        # 显示图片
        plt.imshow(images[i].numpy())

        # 需要给图片增加一个维度
        img_array = tf.expand_dims(images[i], 0)

        # 使用模型预测图片中的人物
        predictions = model.predict(img_array)
        plt.title(class_names[np.argmax(predictions)])

        plt.axis("off")
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 133ms/step
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 26ms/step
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 34ms/step
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 33ms/step
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 36ms/step
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 135ms/step
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 33ms/step
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 42ms/step

在这里插入图片描述

自定义增加函数

import random
def aug_img(image):
    seed = (random.randint(0,9), 0)
    # 随机改变图像对比度
    stateless_random_brightness = tf.image.stateless_random_contrast(image, lower=0.1, upper=1.0, seed=seed)
    return stateless_random_brightness

改变像素

image = tf.expand_dims(images[3]*255, 0)
print("Min and max pixel values:", image.numpy().min(), image.numpy().max())
plt.figure(figsize=(8, 8))
for i in range(9):
    augmented_image = aug_img(image)
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(augmented_image[0].numpy().astype("uint8"))

    plt.axis("off")

在这里插入图片描述

个人总结

  • 学习了数据增强 包括旋转、翻转、缩放、改变图像对比度、改变像素
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值