P5学习笔记

设置GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device
device(type='cuda')

导入数据

import os,PIL,random,pathlib

data_dir = r'C:\Users\11054\Desktop\kLearning\p5_learning\data'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[-1] for path in data_paths]
classeNames
['test', 'train']
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

train_dataset = datasets.ImageFolder(r'C:\Users\11054\Desktop\kLearning\p5_learning\data\train',transform=train_transforms)
test_dataset  = datasets.ImageFolder(r'C:\Users\11054\Desktop\kLearning\p5_learning\data\test',transform=test_transform)
train_dataset.class_to_idx
{'adidas': 0, 'nike': 1}
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

构建CNN模型

import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1=nn.Sequential(
            nn.Conv2d(3, 12, kernel_size=5, padding=0), # 12*220*220
            nn.BatchNorm2d(12),
            nn.ReLU())

        self.conv2=nn.Sequential(
            nn.Conv2d(12, 12, kernel_size=5, padding=0), # 12*216*216
            nn.BatchNorm2d(12),
            nn.ReLU())

        self.pool3=nn.Sequential(
            nn.MaxPool2d(2))                              # 12*108*108

        self.conv4=nn.Sequential(
            nn.Conv2d(12, 24, kernel_size=5, padding=0), # 24*104*104
            nn.BatchNorm2d(24),
            nn.ReLU())

        self.conv5=nn.Sequential(
            nn.Conv2d(24, 24, kernel_size=5, padding=0), # 24*100*100
            nn.BatchNorm2d(24),
            nn.ReLU())

        self.pool6=nn.Sequential(
            nn.MaxPool2d(2))                              # 24*50*50

        self.dropout = nn.Sequential(
            nn.Dropout(0.2))

        self.fc=nn.Sequential(
            nn.Linear(24*50*50, len(classeNames)))

    def forward(self, x):

        batch_size = x.size(0)
        x = self.conv1(x)  # 卷积-BN-激活
        x = self.conv2(x)  # 卷积-BN-激活
        x = self.pool3(x)  # 池化
        x = self.conv4(x)  # 卷积-BN-激活
        x = self.conv5(x)  # 卷积-BN-激活
        x = self.pool6(x)  # 池化
        x = self.dropout(x)
        x = x.view(batch_size, -1)  # flatten 变成全连接网络需要的输入 (batch, 24*50*50) ==> (batch, -1), -1 此处自动算出的是24*50*50
        x = self.fc(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Model().to(device)
model
Using cuda device





Model(
  (conv1): Sequential(
    (0): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (conv2): Sequential(
    (0): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (pool3): Sequential(
    (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (conv4): Sequential(
    (0): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (conv5): Sequential(
    (0): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (pool6): Sequential(
    (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (dropout): Sequential(
    (0): Dropout(p=0.2, inplace=False)
  )
  (fc): Sequential(
    (0): Linear(in_features=60000, out_features=2, bias=True)
  )
)

编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率

    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)

        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失

        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新

        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

编写测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss
def adjust_learning_rate(optimizer, epoch, start_lr):
    # 每 2 个epoch衰减到原来的 0.98
    lr = start_lr * (0.98 ** (epoch // 2))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

设置动态学习率

learn_rate = 0.001# 初始学习率
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)

等间隔动态调整

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma, last_epoch=-1)

  1. optimizer(必需参数):这是要调整学习率的优化器对象,通常是 torch.optim.Optimizer 的一个实例。StepLR 调度器将会修改该优化器的学习率。

  2. step_size(必需参数):表示学习率下降的周期数。当训练周期的数量达到 step_size 的倍数时,学习率将按照 gamma 的值进行降低。例如,如果 step_size 为 30,那么学习率将在第 30、60、90,以及之后的周期进行降低。

  3. gamma(必需参数):衰减因子,用于指定学习率下降的倍数。在每个周期结束时,学习率将乘以 gamma 的值以降低学习率。通常,gamma 的值是小于 1 的浮点数,以降低学习率,例如,0.1 表示学习率减小为原来的 10%。

  4. last_epoch(可选参数,默认为 -1):这个参数表示最后一个训练周期的索引。如果不提供此参数,它会被初始化为 -1,然后在每次学习率更新后自动递增。

# scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.13)

自定义调整

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1, verbose=False)

  1. optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  2. lr_lambda(function):更新学习率的函数
lambda1 = lambda epoch: (0.98 ** (epoch // 2) )# 第二组参数的调整方法
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

多间隔调整

torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)

  1. optimizer(必需参数):这是要调整学习率的优化器对象,通常是 torch.optim.Optimizer 的一个实例。MultiStepLR 调度器将会修改该优化器的学习率。

  2. milestones(必需参数):这是一个列表,其中包含了一系列训练周期的索引,学习率在这些周期结束时会降低。例如,如果 milestones 是 [30, 50, 80],那么学习率将在第 30、50、80 个周期结束时降低。

  3. gamma(可选参数,默认为 0.1):衰减因子,用于指定学习率下降的倍数。在每个里程碑处,学习率将乘以 gamma 的值以降低学习率。通常,gamma 的值是小于 1 的浮点数,以降低学习率,例如,0.1 表示学习率减小为原来的 10%。

  4. last_epoch(可选参数,默认为 -1):这个参数表示最后一个训练周期的索引。如果不提供此参数,它会被初始化为 -1,然后在每次学习率更新后自动递增。

# scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
#                                                  milestones=[2,4,7], #调整学习率的epoch数
#                                                  gamma=0.2)

余弦退火

torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)

  1. optimizer(必需参数):这是要调整学习率的优化器对象,通常是 torch.optim.Optimizer 的一个实例。CosineAnnealingLR 调度器将会修改该优化器的学习率。

  2. T_max(必需参数):这是一个整数,表示学习率在一个周期内变化的次数。一个完整的周期是指学习率从最大值开始下降到 eta_min(下面介绍)再上升到最大值的过程。T_max 决定了一个完整周期的长度。

  3. eta_min(可选参数,默认为 0):这是学习率在一个周期内的最小值,通常是一个小的非负数。学习率将在一个周期内从最大值下降到 eta_min,然后再上升到最大值。这有助于避免学习率过小,从而防止训练提前停止或陷入局部最小值。

  4. last_epoch(可选参数,默认为 -1):这个参数表示最后一个训练周期的索引。如果不提供此参数,它会被初始化为 -1,然后在每次学习率更新后自动递增。

# T_max = 20  # 完整周期长度
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)

正式训练

loss_fn    = nn.CrossEntropyLoss() #交叉熵函数作为损失函数
epochs     = 80

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    adjust_learning_rate(optimizer, epoch, learn_rate)

    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    # scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
                          epoch_test_acc*100, epoch_test_loss, lr))
print('Done')
Epoch:74, Train_acc:100.0%, Train_loss:0.020, Test_acc:76.3%, Test_loss:0.729, Lr:4.83E-04
Epoch:75, Train_acc:99.6%, Train_loss:0.020, Test_acc:76.3%, Test_loss:0.644, Lr:4.74E-04
Epoch:76, Train_acc:100.0%, Train_loss:0.017, Test_acc:76.3%, Test_loss:0.804, Lr:4.74E-04
Epoch:77, Train_acc:99.6%, Train_loss:0.032, Test_acc:75.0%, Test_loss:0.758, Lr:4.64E-04
Epoch:78, Train_acc:99.4%, Train_loss:0.029, Test_acc:75.0%, Test_loss:0.715, Lr:4.64E-04
Epoch:79, Train_acc:100.0%, Train_loss:0.016, Test_acc:78.9%, Test_loss:0.681, Lr:4.55E-04
Epoch:80, Train_acc:99.8%, Train_loss:0.019, Test_acc:76.3%, Test_loss:0.659, Lr:4.55E-04
Done
Epoch: 1, Train_acc:51.2%, Train_loss:3.526, Test_acc:55.3%, Test_loss:0.974, Lr:1.00E-03
Epoch: 2, Train_acc:53.2%, Train_loss:2.163, Test_acc:56.6%, Test_loss:1.180, Lr:1.00E-03
Epoch: 3, Train_acc:63.3%, Train_loss:1.196, Test_acc:65.8%, Test_loss:0.692, Lr:9.80E-04
Epoch: 4, Train_acc:62.7%, Train_loss:1.044, Test_acc:64.5%, Test_loss:0.773, Lr:9.80E-04
Epoch: 5, Train_acc:72.5%, Train_loss:0.649, Test_acc:56.6%, Test_loss:1.283, Lr:9.60E-04
Epoch: 6, Train_acc:77.5%, Train_loss:0.526, Test_acc:52.6%, Test_loss:1.334, Lr:9.60E-04
Epoch: 7, Train_acc:79.5%, Train_loss:0.462, Test_acc:61.8%, Test_loss:0.839, Lr:9.41E-04
Epoch: 8, Train_acc:85.5%, Train_loss:0.342, Test_acc:77.6%, Test_loss:0.451, Lr:9.41E-04
Epoch: 9, Train_acc:82.3%, Train_loss:0.361, Test_acc:73.7%, Test_loss:0.576, Lr:9.22E-04
Epoch:10, Train_acc:94.0%, Train_loss:0.186, Test_acc:76.3%, Test_loss:0.415, Lr:9.22E-04
Epoch:11, Train_acc:94.4%, Train_loss:0.168, Test_acc:76.3%, Test_loss:0.392, Lr:9.04E-04
Epoch:12, Train_acc:96.4%, Train_loss:0.151, Test_acc:84.2%, Test_loss:0.363, Lr:9.04E-04
Epoch:13, Train_acc:96.8%, Train_loss:0.126, Test_acc:86.8%, Test_loss:0.334, Lr:8.86E-04
Epoch:14, Train_acc:98.0%, Train_loss:0.113, Test_acc:80.3%, Test_loss:0.428, Lr:8.86E-04
Epoch:15, Train_acc:97.6%, Train_loss:0.113, Test_acc:85.5%, Test_loss:0.299, Lr:8.68E-04
Epoch:16, Train_acc:97.4%, Train_loss:0.101, Test_acc:86.8%, Test_loss:0.320, Lr:8.68E-04
Epoch:17, Train_acc:99.0%, Train_loss:0.088, Test_acc:84.2%, Test_loss:0.365, Lr:8.51E-04
Epoch:18, Train_acc:99.2%, Train_loss:0.074, Test_acc:86.8%, Test_loss:0.367, Lr:8.51E-04
Epoch:19, Train_acc:99.4%, Train_loss:0.078, Test_acc:84.2%, Test_loss:0.300, Lr:8.34E-04
Epoch:20, Train_acc:99.6%, Train_loss:0.064, Test_acc:84.2%, Test_loss:0.405, Lr:8.34E-04
Epoch:21, Train_acc:99.8%, Train_loss:0.061, Test_acc:84.2%, Test_loss:0.329, Lr:8.17E-04
Epoch:22, Train_acc:99.6%, Train_loss:0.066, Test_acc:85.5%, Test_loss:0.316, Lr:8.17E-04
Epoch:23, Train_acc:99.6%, Train_loss:0.059, Test_acc:80.3%, Test_loss:0.473, Lr:8.01E-04
Epoch:24, Train_acc:99.4%, Train_loss:0.052, Test_acc:84.2%, Test_loss:0.275, Lr:8.01E-04
Epoch:25, Train_acc:99.8%, Train_loss:0.049, Test_acc:86.8%, Test_loss:0.307, Lr:7.85E-04
Epoch:26, Train_acc:99.6%, Train_loss:0.048, Test_acc:85.5%, Test_loss:0.321, Lr:7.85E-04
Epoch:27, Train_acc:100.0%, Train_loss:0.044, Test_acc:85.5%, Test_loss:0.290, Lr:7.69E-04
Epoch:28, Train_acc:99.8%, Train_loss:0.048, Test_acc:86.8%, Test_loss:0.302, Lr:7.69E-04
Epoch:29, Train_acc:100.0%, Train_loss:0.046, Test_acc:85.5%, Test_loss:0.308, Lr:7.54E-04
Epoch:30, Train_acc:100.0%, Train_loss:0.042, Test_acc:85.5%, Test_loss:0.296, Lr:7.54E-04
Epoch:31, Train_acc:100.0%, Train_loss:0.036, Test_acc:86.8%, Test_loss:0.305, Lr:7.39E-04
Epoch:32, Train_acc:100.0%, Train_loss:0.036, Test_acc:86.8%, Test_loss:0.358, Lr:7.39E-04
Epoch:33, Train_acc:99.8%, Train_loss:0.035, Test_acc:86.8%, Test_loss:0.352, Lr:7.24E-04
Epoch:34, Train_acc:100.0%, Train_loss:0.034, Test_acc:84.2%, Test_loss:0.349, Lr:7.24E-04
Epoch:35, Train_acc:100.0%, Train_loss:0.032, Test_acc:86.8%, Test_loss:0.314, Lr:7.09E-04
Epoch:36, Train_acc:100.0%, Train_loss:0.035, Test_acc:86.8%, Test_loss:0.372, Lr:7.09E-04
Epoch:37, Train_acc:100.0%, Train_loss:0.031, Test_acc:84.2%, Test_loss:0.341, Lr:6.95E-04
Epoch:38, Train_acc:100.0%, Train_loss:0.027, Test_acc:85.5%, Test_loss:0.347, Lr:6.95E-04
Epoch:39, Train_acc:100.0%, Train_loss:0.030, Test_acc:85.5%, Test_loss:0.386, Lr:6.81E-04
Epoch:40, Train_acc:100.0%, Train_loss:0.028, Test_acc:86.8%, Test_loss:0.290, Lr:6.81E-04
Epoch:41, Train_acc:100.0%, Train_loss:0.028, Test_acc:85.5%, Test_loss:0.394, Lr:6.68E-04
Epoch:42, Train_acc:100.0%, Train_loss:0.025, Test_acc:86.8%, Test_loss:0.329, Lr:6.68E-04
Epoch:43, Train_acc:100.0%, Train_loss:0.027, Test_acc:85.5%, Test_loss:0.426, Lr:6.54E-04
Epoch:44, Train_acc:100.0%, Train_loss:0.025, Test_acc:86.8%, Test_loss:0.282, Lr:6.54E-04
Epoch:45, Train_acc:100.0%, Train_loss:0.024, Test_acc:85.5%, Test_loss:0.347, Lr:6.41E-04
Epoch:46, Train_acc:100.0%, Train_loss:0.023, Test_acc:85.5%, Test_loss:0.304, Lr:6.41E-04
Epoch:47, Train_acc:100.0%, Train_loss:0.022, Test_acc:86.8%, Test_loss:0.294, Lr:6.28E-04
Epoch:48, Train_acc:100.0%, Train_loss:0.024, Test_acc:86.8%, Test_loss:0.391, Lr:6.28E-04
Epoch:49, Train_acc:100.0%, Train_loss:0.022, Test_acc:84.2%, Test_loss:0.342, Lr:6.16E-04
Epoch:50, Train_acc:100.0%, Train_loss:0.023, Test_acc:85.5%, Test_loss:0.378, Lr:6.16E-04
Epoch:51, Train_acc:100.0%, Train_loss:0.021, Test_acc:85.5%, Test_loss:0.319, Lr:6.03E-04
Epoch:52, Train_acc:100.0%, Train_loss:0.019, Test_acc:85.5%, Test_loss:0.311, Lr:6.03E-04
Epoch:53, Train_acc:100.0%, Train_loss:0.021, Test_acc:85.5%, Test_loss:0.279, Lr:5.91E-04
Epoch:54, Train_acc:100.0%, Train_loss:0.021, Test_acc:84.2%, Test_loss:0.311, Lr:5.91E-04
Epoch:55, Train_acc:100.0%, Train_loss:0.021, Test_acc:84.2%, Test_loss:0.379, Lr:5.80E-04
Epoch:56, Train_acc:100.0%, Train_loss:0.020, Test_acc:85.5%, Test_loss:0.347, Lr:5.80E-04
Epoch:57, Train_acc:100.0%, Train_loss:0.020, Test_acc:85.5%, Test_loss:0.382, Lr:5.68E-04
Epoch:58, Train_acc:100.0%, Train_loss:0.020, Test_acc:85.5%, Test_loss:0.313, Lr:5.68E-04
Epoch:59, Train_acc:100.0%, Train_loss:0.020, Test_acc:84.2%, Test_loss:0.350, Lr:5.57E-04
Epoch:60, Train_acc:100.0%, Train_loss:0.018, Test_acc:84.2%, Test_loss:0.322, Lr:5.57E-04
Epoch:61, Train_acc:100.0%, Train_loss:0.018, Test_acc:85.5%, Test_loss:0.299, Lr:5.45E-04
Epoch:62, Train_acc:100.0%, Train_loss:0.020, Test_acc:84.2%, Test_loss:0.302, Lr:5.45E-04
Epoch:63, Train_acc:100.0%, Train_loss:0.017, Test_acc:84.2%, Test_loss:0.492, Lr:5.35E-04
Epoch:64, Train_acc:100.0%, Train_loss:0.017, Test_acc:84.2%, Test_loss:0.397, Lr:5.35E-04
Epoch:65, Train_acc:100.0%, Train_loss:0.016, Test_acc:84.2%, Test_loss:0.309, Lr:5.24E-04
Epoch:66, Train_acc:100.0%, Train_loss:0.016, Test_acc:84.2%, Test_loss:0.354, Lr:5.24E-04
Epoch:67, Train_acc:100.0%, Train_loss:0.017, Test_acc:84.2%, Test_loss:0.325, Lr:5.13E-04
Epoch:68, Train_acc:100.0%, Train_loss:0.016, Test_acc:84.2%, Test_loss:0.354, Lr:5.13E-04
Epoch:69, Train_acc:100.0%, Train_loss:0.016, Test_acc:84.2%, Test_loss:0.391, Lr:5.03E-04
Epoch:70, Train_acc:100.0%, Train_loss:0.018, Test_acc:84.2%, Test_loss:0.360, Lr:5.03E-04
Epoch:71, Train_acc:100.0%, Train_loss:0.016, Test_acc:84.2%, Test_loss:0.345, Lr:4.93E-04
Epoch:72, Train_acc:100.0%, Train_loss:0.017, Test_acc:84.2%, Test_loss:0.316, Lr:4.93E-04
Epoch:73, Train_acc:100.0%, Train_loss:0.016, Test_acc:84.2%, Test_loss:0.303, Lr:4.83E-04
Epoch:74, Train_acc:100.0%, Train_loss:0.015, Test_acc:84.2%, Test_loss:0.361, Lr:4.83E-04
Epoch:75, Train_acc:100.0%, Train_loss:0.016, Test_acc:84.2%, Test_loss:0.326, Lr:4.74E-04
Epoch:76, Train_acc:100.0%, Train_loss:0.016, Test_acc:84.2%, Test_loss:0.393, Lr:4.74E-04
Epoch:77, Train_acc:100.0%, Train_loss:0.015, Test_acc:84.2%, Test_loss:0.350, Lr:4.64E-04
Epoch:78, Train_acc:100.0%, Train_loss:0.015, Test_acc:84.2%, Test_loss:0.310, Lr:4.64E-04
Epoch:79, Train_acc:99.8%, Train_loss:0.017, Test_acc:85.5%, Test_loss:0.294, Lr:4.55E-04
Epoch:80, Train_acc:100.0%, Train_loss:0.015, Test_acc:84.2%, Test_loss:0.331, Lr:4.55E-04
Done

结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

使用模型进行预测

from PIL import Image

classes = list(train_dataset.class_to_idx)

def predict_one_image(image_path, model, transform, classes):

    test_img = Image.open(image_path).convert('RGB')
    # plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)

    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')

# 预测训练集中的某张照片
predict_one_image(image_path=r'C:\Users\11054\Desktop\kLearning\p5_learning\data\test\adidas\0.jpg',
                  model=model,
                  transform=train_transforms,
                  classes=classes)
预测结果是:nike
# 模型保存
PATH = r'C:\Users\11054\Desktop\kLearning\p5_learning\model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))
<All keys matched successfully>

个人总结

使用LambdaLR法获得了较好了测试集accuracy,训练次数过大反而效果未必理想

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值