P2学习笔记

配置环境

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device
device(type='cuda')

下载训练集和测试集

train_ds = torchvision.datasets.CIFAR10('data2',
                                      train=True,
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.CIFAR10('data2',
                                      train=False,
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to data2\cifar-10-python.tar.gz


100%|██████████| 170498071/170498071 [00:19<00:00, 8536534.91it/s] 


Extracting data2\cifar-10-python.tar.gz to data2
Files already downloaded and verified

数据可视化

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds,
                                       batch_size=batch_size,
                                       shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds,
                                       batch_size=batch_size)
# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
imgs.shape
torch.Size([32, 3, 32, 32])
import numpy as np

 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5))
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减
    npimg = imgs.numpy().transpose((1, 2, 0))
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')

在这里插入图片描述

创建模型

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(kernel_size=2)       # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3
        self.pool2 = nn.MaxPool2d(kernel_size=2)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3
        self.pool3 = nn.MaxPool2d(kernel_size=2)

        # 分类网络
        self.fc1 = nn.Linear(512, 256)
        self.fc2 = nn.Linear(256, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))

        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)

        return x

torch.nn.Conv2d() 实现了二维卷积操作。在卷积神经网络中,卷积层通过对输入数据应用多个不同的卷积核,并加上偏置项,来提取输入数据的特征。每个卷积核学习从输入数据中提取不同的特征。

查看模型信息

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            1,792
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            36,928
├─MaxPool2d: 1-4                         --
├─Conv2d: 1-5                            73,856
├─MaxPool2d: 1-6                         --
├─Linear: 1-7                            131,328
├─Linear: 1-8                            2,570
=================================================================
Total params: 246,474
Trainable params: 246,474
Non-trainable params: 0
=================================================================
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

定义训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率

    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)

        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失

        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新

        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

定义测试函数

# 测试方法
def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

开始训练

epochs     = 10
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:15.2%, Train_loss:2.271, Test_acc:18.5%,Test_loss:2.147
Epoch: 2, Train_acc:26.3%, Train_loss:1.993, Test_acc:30.4%,Test_loss:1.938
Epoch: 3, Train_acc:35.7%, Train_loss:1.773, Test_acc:37.3%,Test_loss:1.771
Epoch: 4, Train_acc:41.4%, Train_loss:1.612, Test_acc:43.0%,Test_loss:1.572
Epoch: 5, Train_acc:44.9%, Train_loss:1.515, Test_acc:45.7%,Test_loss:1.523
Epoch: 6, Train_acc:48.2%, Train_loss:1.432, Test_acc:50.1%,Test_loss:1.384
Epoch: 7, Train_acc:51.1%, Train_loss:1.359, Test_acc:47.0%,Test_loss:1.518
Epoch: 8, Train_acc:53.6%, Train_loss:1.294, Test_acc:54.9%,Test_loss:1.274
Epoch: 9, Train_acc:56.0%, Train_loss:1.232, Test_acc:52.7%,Test_loss:1.346
Epoch:10, Train_acc:58.2%, Train_loss:1.180, Test_acc:57.6%,Test_loss:1.190
Done

查看结果

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
  • 训练精度(Training Accuracy)是指模型在训练数据集上进行训练时所达到的准确率,它衡量了模型在已知标签的训练样本上的预测准确程度。

  • 测试精度(Test Accuracy)是指模型在独立的测试数据集上进行验证时所达到的准确率,它衡量了模型在未见过的样本上的预测准确程度。测试精度常用来评估模型的泛化能力,即模型对于未知数据的预测能力。

jupyter文件转md文件命令:jupyter nbconvert --to markdown file_path.ipynb

卷积层与池化层的计算

1. 卷积层的计算过程

一个 4 × 4 4 \times 4 4×4 的输入矩阵 I I I,和一个 3 × 3 3 \times 3 3×3 的卷积核 K K K,卷积操作的步骤如下:

输入矩阵 I I I:
[ i 11 i 12 i 13 i 14 i 21 i 22 i 23 i 24 i 31 i 32 i 33 i 34 i 41 i 42 i 43 i 44 ] \begin{bmatrix} i_{11} & i_{12} & i_{13} & i_{14} \\ i_{21} & i_{22} & i_{23} & i_{24} \\ i_{31} & i_{32} & i_{33} & i_{34} \\ i_{41} & i_{42} & i_{43} & i_{44} \end{bmatrix} i11i21i31i41i12i22i32i42i13i23i33i43i14i24i34i44

卷积核 K K K:
[ k 11 k 12 k 13 k 21 k 22 k 23 k 31 k 32 k 33 ] \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{bmatrix} k11k21k31k12k22k32k13k23k33

进行卷积操作(这里假设步长为1,无填充):

输出 O O O 的第一个元素 o 11 o_{11} o11 通过取输入矩阵的左上角 3 × 3 3 \times 3 3×3 子矩阵与卷积核 K K K 进行元素对应相乘后求和得到:

o 11 = i 11 k 11 + i 12 k 12 + i 13 k 13 + i 21 k 21 + i 22 k 22 + i 23 k 23 + i 31 k 31 + i 32 k 32 + i 33 k 33 o_{11} = i_{11}k_{11} + i_{12}k_{12} + i_{13}k_{13} + i_{21}k_{21} + i_{22}k_{22} + i_{23}k_{23} + i_{31}k_{31} + i_{32}k_{32} + i_{33}k_{33} o11=i11k11+i12k12+i13k13+i21k21+i22k22+i23k23+i31k31+i32k32+i33k33

依此类推,可以计算输出矩阵 O O O 中的其他元素。

输出矩阵大小的计算公式是:
输出大小 = 输入大小 − 核大小 + 2 × 填充 步长 + 1 \text{输出大小} = \frac{\text{输入大小} - \text{核大小} + 2 \times \text{填充}}{\text{步长}} + 1 输出大小=步长输入大小核大小+2×填充+1

2. 池化层的计算过程

池化层通常用于降低数据的空间尺寸,同时保持重要信息。我们来看最常用的池化操作:最大池化。

假设我们有以下 4 × 4 4 \times 4 4×4 矩阵作为输入,并执行 2 × 2 2 \times 2 2×2 的最大池化操作:

[ p 11 p 12 p 13 p 14 p 21 p 22 p 23 p 24 p 31 p 32 p 33 p 34 p 41 p 42 p 43 p 44 ] \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix} p11p21p31p41p12p22p32p42p13p23p33p43p14p24p34p44

最大池化会在 2 × 2 2 \times 2 2×2 的子矩阵中选择最大的元素,因此,池化层的输出将是:

[ max ⁡ ( p 11 , p 12 , p 21 , p 22 ) max ⁡ ( p 13 , p 14 , p 23 , p 24 ) max ⁡ ( p 31 , p 32 , p 41 , p 42 ) max ⁡ ( p 33 , p 34 , p 43 , p 44 ) ] \begin{bmatrix} \max(p_{11}, p_{12}, p_{21}, p_{22}) & \max(p_{13}, p_{14}, p_{23}, p_{24}) \\ \max(p_{31}, p_{32}, p_{41}, p_{42}) & \max(p_{33}, p_{34}, p_{43}, p_{44}) \end{bmatrix} [max(p11,p12,p21,p22)max(p31,p32,p41,p42)max(p13,p14,p23,p24)max(p33,p34,p43,p44)]

个人小结

  1. 定义了一个包含卷积层和全连接层的神经网络模型。模型中使用了ReLU激活函数和最大池化来增强特征提取能力和减少计算复杂度。
  2. 熟悉了关于卷积层和池化层计算过程,增加了对模型内部运作的理解。
  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值