自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

翻译 用OpenCV实现随机发生器与文本

目标学习使用随机数发生器类(RNG)并从一个均匀分布中得到一个随机数。 利用putText函数来展现文本代码将使用随机数作为绘画的参数,并用大量的几何图形来组成图像。既然会随机初始化,这个过程会使用loop来自动实现。 代码在OpenCV的sample文件夹中(一般是%your_opencv_folder%\sources\samples\cpp\tutorial_code\core\Matri

2016-01-23 01:02:49 586

翻译 ROS7—理解ROS服务和参数

这篇教程介绍ROS服务,参数以及使用rosservice和rosparam命令行工具。假设前面的turtlesim节点还在运行。1.ROS服务服务(Services)是另一种节点间相互通信的方法。服务允许节点发送请求(request)并接收回应(response)。2.使用rosservicerosservice能简单地将服务添加到ROS的客户/服务框架中,它有很多命令能在话题中使用,如下所示:ro

2016-01-11 02:38:39 1555

翻译 ROS6—理解话题

这篇教程介绍ROS主题与使用rostopic和rqt_plot设置在新终端中运行rosrun,在另一个新终端中运行rosrun turtlesim turtlesim_node。 我们需要驱动turtle,由键盘远程操作,在一个新终端中运行:$ rosrun turtle turtle_teleop_key会得到类似这样的信息:[ INFO] 1254264546.878445000: Star

2016-01-10 18:19:39 1650

翻译 ROS5—理解ROS节点

这篇教程会介绍ROS图概念和并讨论roscore、rosnode和rosrun命令的使用。1.预备条件这里会使用轻量级的模拟器,先安装$ sudo apt-get install ros-<distro>-ros-tutorials将替换成你的ROS版本名称。2.图概念的快速概览节点(nodes):节点是一个利用ROS来与其他节点通信的可执行文件。消息(messages):在顶阅或推送一个主题

2016-01-10 15:54:01 2090

翻译 ROS4—建立包

1.建立一个ROS包这篇讲义包含建立包的工具链。2利用catkin_make可以将catkin_make理解为在标准CMake工作流中结合了cmake和make调用功能的命令行工具。# In a catkin workspace$ catkin_make [make_targets] [-DCMAKE_VARIABLES=...]CMake工作流通常是这样的# In a CMake projec

2016-01-10 15:34:24 362

翻译 ROS3—创建包

1. 创建一个ROS包利用roscreate-pkg和catkin来创建新包,用rospack来列出包的依赖。2. 一个catkin包的组成一个catkin包必须有: - 一个catkin顺从包package.xml提供包的元信息 - 一个使用catkin的CMakeLists.txt - 在每个文件夹中只有一个包3.在catkin工作空间的包workspace_folder/

2016-01-09 23:19:37 433

原创 《神经网络与深度学习》讲义1—数学基础

本文摘自邱锡鹏老师的《神经网络与深度学习》讲义范数矩阵的pp范数为: ∥A∥=⎛⎝∑i=1m∑j=1n∣aij∣p⎞⎠1/p\lVert A \rVert = \left( \sum_{i=1}^m \sum_{j=1}^n \lvert a_{ij} \rvert^p\right)^{1/p}导数pp维向量x∈Rp\mathbf x \in \mathbb R^p,函数y=f(x)=f(x1,⋯

2015-12-29 20:29:24 3195

翻译 通过概率规划归纳的人类水平概念学习

本文翻译自Nature上刊载的论文Human-level Concept Learning through Probabilistic Program Induction人类对新概念的学习能够从一个简单示例推广,而机器学习算法通常需要数万的样本才能达到同样的准确度。人类也能比算法更丰富地运用学到的概念——如行为,想象和解释。本文提出一种能够在一大类简单视觉概念上(字母的手写字符)具有同样能力的计算模

2015-12-14 11:31:56 4078 2

转载 DLch1

IntroductionProblems that are intellectually difficult for human beings but relatively straight-forward for computers—problems that can be described by a list of formal, mathematical rules. Challenges t

2015-12-11 02:13:50 452

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除