复试机器学习相关

1. 引言

1.1 机器学习定义

Arthur Samuel:机器学习赋予计算机学习的能力,这种能力不是通过显式编程实现的。
Tom Mitshell:一个被称为可以学习的计算机程序是指,它可以针对某个任务T和某个性能指标P,从经验E中学习。这种学习的特点是,它在T上的被P衡量的性能,会随着经验E的增加而增加。

1.2 机器学习的分类

按任务是否需要和环境交互分类

监督学习由人工采集数据并附带标签,输入计算机;强化学习的数据来源于计算机的行为及其结果,计算机根据收益函数对行为进行奖励或惩罚,逐渐强化自己的行为模式。

监督学习(按训练数据是否含有标签)

  • 传统的监督学习
    • 支持向量机
    • 人工神经网络
    • 深度神经网络
  • 非监督学习
    • 聚类
    • EM算法
    • 主成分分析
  • 半监督学习

监督学习(按标签是连续还是离散)

  • 回归
  • 分类

强化学习

2. 支持向量机

2.1 线性可分

在二维特征空间中,能否用一条直线将样本分成两个部分

2.2 问题描述

一、解决线性可分问题
二、再将线性可分问题中的结论推广到线性不可分的情况

超平面标准:

  • 超平面分开了两个类
  • 最大化间隔
  • 处于间隔中间,到所有支持向量的距离相等

2.3 优化问题

将求解支持向量机的ω、b参数转化成凸优化问题。
最小化: 1 2 ∣ ∣ ω 2 ∣ ∣ \frac{1}{2}||ω^2|| 21ω2
限制:非支持向量满足 ∣ ω T X i + b > 1 ∣ |ω^TX_i+b>1| ωTXi+b>1

2.4 线性不可分情况

放松限制条件,引入松弛变量。
限制条件改为 y i ( ω T X i + b ) ≥ 1 − δ i y_i(ω^TX_i+b) \geq 1-δ_i yi(ωTXi+b)1δi
改造后的支持向量机优化版本:
最小化: 1 2 ∣ ∣ ω 2 ∣ ∣ + C ∑ i = 1 N δ i \frac{1}{2}||ω^2||+C\sum\limits ^N_{i=1}δ_i 21ω2+Ci=1Nδi 1 2 ∣ ∣ ω 2 ∣ ∣ + C ∑ i = 1 N δ i 2 \frac{1}{2}||ω^2||+C\sum\limits ^N_{i=1}δ_i^2 21ω2+Ci=1Nδi2
限制条件:

  • (1) δ i ≥ 0 δ_i\geq 0 δi0;
  • (2) y i ( ω T X i + b ) ≥ 1 − δ i y_i(ω^TX_i+b) \geq 1-δ_i yi(ωTXi+b)1δi

C为超参数(人为设定的参数)。
还不是能解决所有问题,要扩大可选函数的范围。

2.5 低维到高维的映射

φ ( X ) φ(X) φ(X) X X X 从低维映射到高维

2.6 核函数

K ( X 1 , X 2 ) = φ ( X 1 ) T φ ( X 2 ) K(X_1,X_2)=φ(X_1)^Tφ(X_2) K(X1,X2)=φ(X1)Tφ(X2)
核函数 K K K 与映射 φ φ φ 是一一对应的。
条件: K K K 满足交换性和半正定性。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 支持向量机(Support Vector Machine, SVM)是一种常用的机器学习算法,用于分类和回归分析。其原理是在高维空间中寻找一个超平面,将不同类别的数据点尽可能地分开。 SVM的主要思想是找到一个最优的超平面,使得在该超平面上的数据点到两个类别的最近样本点(即支持向量)的距离最大化。这样做的目的是为了提高模型的泛化能力,使其在未知数据上的预测精度更高。 SVM在训练时可以使用不同的核函数,如线性核、多项式核和高斯核等。这些核函数可以将数据点从原始特征空间映射到更高维的特征空间,从而使得数据在新的特征空间中更容易被分开。 在使用SVM算法时,需要进行一些参数的调优,如C值和核函数的参数。C值是一个正则化参数,用于平衡模型的分类精度和复杂度。较小的C值会更加关注分类精度,而较大的C值会更加关注模型的复杂度。对于线性核函数,还可以调整正则化参数C来控制对误分类的惩罚程度。 总结来说,SVM是一种强大的机器学习算法,可以用于分类和回归问题。它可以处理高维数据,并通过寻找一个最优的超平面来分开不同类别的数据点。在使用SVM时,需要合理选择核函数和调优参数,以获得更好的分类结果。 ### 回答2: SVM(支持向量机)是一种用于分类和回归分析的监督学习算法。它的目标是找到一个最优超平面,将不同类别的样本点分开,使得间隔最大化。其基本思想是将输入空间映射到一个高维特征空间,通过在高维空间中寻找最优超平面来进行分类。 对于SVM算法,在机器学习复试过程中,可能会被问到以下几个方面的问题: 1. SVM算法的原理是什么? SVM算法通过在特征空间中找到最大间隔超平面来进行分类。它通过数学优化的方法,找到能够将不同类别的样本点分隔开的超平面,并且使得超平面到最近的样本点的距离最大化。 2. SVM算法有哪些核函数? SVM算法可以使用不同的核函数进行特征空间的映射。常见的核函数有线性核函数、多项式核函数和高斯核函数等。通过不同的核函数,可以在不同的特征空间中进行分类,提高分类的准确性和鲁棒性。 3. SVM算法有哪些优点和缺点? SVM算法的优点包括:可以处理高维特征空间和非线性问题、具有较强的泛化能力、只依赖支持向量,不受无关样本的影响。缺点包括:对大规模数据集处理效率较低、对参数的选择和核函数的设计较为敏感。 4. SVM算法与其他机器学习算法有什么区别? SVM算法与其他机器学习算法在原理和应用上有所不同。与逻辑回归和朴素贝叶斯等算法相比,SVM算法是一种非概率模型,它主要关注分类超平面的最大间隔,并且可以处理非线性问题。与决策树和神经网络等算法相比,SVM算法不会陷入局部最优解,具有较强的鲁棒性。 综上所述,SVM算法是一种常用的机器学习算法,用于分类和回归分析。它通过找到最大间隔超平面来进行分类,并且可以处理高维特征空间和非线性问题。在复试过程中,了解其原理、核函数、优缺点以及与其他算法的区别,是对SVM算法的基本了解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值