人工智能入门1 机器学习概念与类别&&Anaconda、Jupyter Notebook下载配置

本文介绍了机器学习的基本概念,区分了监督学习、无监督学习、半监督学习和强化学习,并提到了Anaconda和JupyterNotebook在数据科学中的作用,以及如何下载和配置这两个工具,特别是创建和管理Python环境。
摘要由CSDN通过智能技术生成

机器学习

机器学习的解释

机器学习可以从数据中寻找规律,建立关系,根据建立的关系去解决问题。假设要对某个数据进行预测,通常我们会输入一个函数,为机器提供自变量并让它输出因变量。而机器学习则不需要这个我们提前预设好的函数,只需要提供大量的数据,让它自己学习数据间的关系,自己生成x和y的函数关系基于数据实现自我优化和升级。

机器学习的类别

  • 监督学习(Supervised Learning)-训练数据包括正确结果(标签label),我们为机器提供正确的分类。应用场景:人脸识别、语音诊断等
  • 无监督学习(Unsupervised Learning)-训练数据不包括正确的结果,机器对数据自动分类。应用场景:新闻聚类
  • 半监督学习(Semi-supervised Learning)-训练数据包括少量正确的结果,我们为机器提供一丢丢正确的分类。适用于数据有限但是需要正确分类的情况
  • 强化学习(Reinforcement Learning)-根据每次结果收获的奖惩进行学习(给分数),实现优化,程序逐步寻找获得最高分的方法。应用场景:AlphaGo

 各类别对应内容

  • 监督学习:线性回归、逻辑回归、决策树、神经网络、卷积神经网络、循环神经网络
  • 无监督学习:聚类算法

Anaconda、Jupyter Notebook简介

Anaconda

Anaconda是用来进行包管理、环境管理等的工具。它可以隔离开不同的python版本,让项目使用的包独立出来。Anaconda 预装了诸如 NumPy、Pandas、SciPy、Matplotlib 等广泛使用的科学计算库,使得数据分析和可视化更为方便。在后续的人工智能学习中会频繁使用这些库。

Jupyter Notebook

Jupyter提供了一个web页面可以对代码进行编辑和编译运行。还有神奇的运行某一块代码的功能,方便代码测试。

Anaconda下载配置

下载Anaconda

下载地址:https://www.anaconda.com/

勾选添加到环境变量,如果没有勾选,手动将以下路径加入path环境变量(找你安装Anaconda的文件夹anaconda,把绝对路径放到环境变量里,以下只是缩略的示例):

\anaconda
\anaconda\Scripts
\anaconda\Library\bin
\anaconda\Library\mingw-w64\bin

启动Anaconda Navigator

Win+R,进入cmd后输入Anaconda Navigator/直接开始搜索Anaconda Navigator即可。

创建新的环境

输入搜索Anaconda Prompt并打开,可以看到现在所处的虚拟环境名为(base),输入以下命令创建新的虚拟环境:

conda create -n [name]

在name中输入新环境的名称,然后激活环境:

conda activate [name]

在命令行中可以看到,虚拟环境名称变成了新的name。

Jupyter Notebook下载

Jupyter Notebook安装

完成上面的操作后回到Anaconda Navigator界面,可以看到新建的First_AI环境已在列表中。选中我们新创建的环境后Jupyter应该是没有安装的,可以先点击Install,然后就可以点击launch启动。

Jupyter界面一览

点击launch打开Jupyter后,会从浏览器打开一个web网页localhost:8888​​​​​​

打开成功后长这个样子:

每个人的都不一样,其中可以看到打开路径下你计算机中的文件,你可以在这里对你的计算机文件进行编辑、新建、保存等等操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值