最近在刷蓝桥杯题目,按题目做一下笔记整理,顺便分享交流一下,有更好的解决方案欢迎大家共同提出探讨,以下源代码为系统提交满分答案
印章
问题描述
资源限制
Python时间限制:5.0s
问题描述
共有n种图案的印章,每种图案的出现概率相同。小A买了m张印章,求小A集齐n种印章的概率。
输入格式
一行两个正整数n和m
输出格式
一个实数P表示答案,保留4位小数。
样例输入
2 3
样例输出
0.7500
数据规模与约定
1≤n,m≤20
源代码
n,m = map(int,input().split())
# 创建二位数组
'''
创建m+1行 n+1列的二维数组
输入4 3
dp = [
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]
]
'''
dp = [[0 for i in range(n + 1)] for i in range(m + 1)]
for i in range(1 , m + 1):
for j in range(1 , n + 1):
if i < j :
dp[i][j] = 0
elif j == 1:
dp[i][j] = pow(1 / n ,i - 1)
else:
dp[i][j] = dp[i-1][j] * (1/n) * j + dp[i-1][j-1] * (1/n)*(n-(j-1))
print("{:.4f}".format(dp[m][n]))
问题分析
该题为经典的DP(动态规划)问题,需要使用DP(动态规划)思想解决
什么是DP(动态规划)呢?
用非人话说,DP基本性质:
1、问题具有最优⼦结构性质:问题所包含的⼦问题的解也是最优的。
2、⽆后效性:算⼀步是⼀步,只会存储当前的运算结果。为下⼀步计算提供结果。
DP的解题核心:写出递归问题的转移⽅程并确定转移⽅程的边界条件。
用人话转述就是:一个问题可以被分解为诸多子问题,每一个求解结果都依赖于上一步的结果,同时在计算中需要注意边界值的判断
本题需要分情况考虑,初步思考为:
1.需要集齐的印章数 > 购买的印章的数量
2.需要集齐印章数为1,购买的印章数量为1
3.需要集齐印章数为1,购买的印章数量大于1
4.其它情况
下面进行具体分析:
1.当需要集齐的印章数 > 购买的印章的数量
时,此时是不可能集齐的,P必定为0
2.当需要集齐的印章数为1,购买的印章数量为1
时,此时我们购买的那一张印章一定为唯一的那一种图案,P必定为1
3.当需要集齐印章数为1,购买的印章数量大于1
时,假设购买的印章为4张(i=4):
第一张必定抽取到唯一的印章图案,P为1
;第二张需要从n种印章中抽取刚才抽取的那一种图案,因此需要乘1/n(n为印章图案总数)
;第三张仍需要从n种印章中抽取刚才抽取的那一种图案,因此再乘1/n
;第四张同理
。因此,当需要集齐印章数为1,购买的印章数量大于1
时,P = (1/n)^(i-1)
4.其它情况下,又可分为两种子情况:
(1)抽取的印章图案为已有的图案(重复)
假设在购买3张时已经集齐了三种印章图案(i=3,j=3),那么下一张一定会出现已拥有三种图案中的一种
,也就是只能从n中抽取已存在的三张,由i,j之间的关系推出这种情况的概率为dp[i-1][j]*(1/n)*j
(2)抽取的印章图案为新的图案
假设印章图案还没有收集完成,那么此时抽取的印章便为新的印章图案,只能从未抽取过的n-(j-1)
个图案中进行选择(-1是因为本次抽取还没有完成,因此本次的印章不用减掉,被减数j需要-1 -> 也可以理解成减掉j后把本次的印章加上,再加一n-j+1
),由i,j之间的关系推出这种情况的概率为dp[i-1][j-1]*(1/n)*(n-(j-1))
将两种情况相加就是dp[i][j]的概率,在进行一番循环计算后,只需要输出二位数组的最后一位数dp[m][n]
,即我们所需要求的概率
测评结果
更多题目,点击查看👇
Python蓝桥杯 基础练习题目整理👈
Python蓝桥杯 算法训练题目整理👈
Python蓝桥杯 算法提高题目整理👈
Python蓝桥杯 历届真题题目整理👈
Python蓝桥杯 练习系统题目整理(全)👈