通信原理学习笔记6-3:数字解调——判决和误码率推导

根据 [通信原理学习笔记6-1],基础的解调链路由下变频、匹配滤波器、抽样、判决组成,并且已经知道:

  • 在无ISI时,任意位置 n n n上的一个符号 I n I_n In经过AWGN信道、匹配滤波器、采样后,接收端得到符号 Y n Y_{n} Yn Y n = I n + n n Y_{n}=I_{n}+n_{n} Yn=In+nn
  • 其中, n n n_{n} nn为离散高斯白噪声,原因:
    高斯白噪声 n ( t ) n(t) n(t)经过匹配滤波器 g ( T − t ) g(T-t) g(Tt),得到带限高斯白噪声 n B ( t ) = ∫ − ∞ ∞ n ( τ ) g [ t − ( T − τ ) ] d τ n_B(t)=\int_{-\infty}^{\infty} n(\tau) g[t-(T-\tau)] \mathrm{d} \tau nB(t)=n(τ)g[t(Tτ)]dτ
    带限高斯白噪声 n B ( t ) n_B(t) nB(t) T + n T s T+nT_s T+nTs时刻采样得到离散高斯白噪声 n n n_{n} nn(自相关函数满足 R n n [ n ] = N 0 2 δ [ n ] R_{n n}[n]=\frac{N_{0}}{2} \delta[n] Rnn[n]=2N0δ[n],故噪声方差/功率谱密度 N 0 / 2 N_0/2 N0/2

抽样判决

判决,就是在数字解调中,将接收符号判定为某个可能的发射符号

这里直接给出译码准则的结论,具体依据在6-3文章介绍:

  • 根据下面的译码准则,当噪声为高斯的,ML准则等价于最小二乘LS准则
  • 在QAM中, I n I_n In为复数(星座点 c ∈ C c\in C cC位于复平面上)的情况下,
    最小二乘准则LS进一步具体化为最小距离准则
    最终判决结果就是在星座图上找一个点 c c c,使得 c c c和接收符号 Y n Y_n Yn的欧式距离最小
    I ^ n = arg ⁡ min ⁡ c ∈ C ∣ Y n − c ∣ 2 \hat{I}_{n}=\arg \min _{c \in C}\left|Y_{n}-c\right|^{2} I^n=argcCminYnc2

6-3中还会详细介绍译码准则的来源

误码率的讨论

平均比特能量 E b E_b Eb

对于 Y n = I n + n n Y_{n}=I_{n}+n_{n} Yn=In+nn,其中离散高斯白噪声 n n n_{n} nn的方差/功率谱密度为 N 0 / 2 N_0/2 N0/2

  • 符号能量为 E s = E [ ∣ I n ∣ 2 ] = ∑ m = 1 M ∣ c m ∣ 2 M E_s=E[|I_n|^2]=\sum_{m=1}^{M}\frac{|c_m|^2}{M} Es=E[In2]=m=1MMcm2(所有复数星座点能量取平均)
  • 噪声功率谱密度: N 0 N_0 N0(复信号的两路实信号,或实信号的双边带)
  • 实际中更经常使用的是平均比特能量 E b E_b Eb,就是将一个符号的能量平摊到其承载的比特中 E b = E s l o g 2 M ⋅ R E_b=\frac{E_s}{log_2M\cdot R} Eb=log2MREs其中 R R R信道编码的码率(比如1bit编码为2bit,则 R = 1 / 2 R=1/2 R=1/2
    采用了平均比特能量 E b E_b Eb,有利于公平比较不同的编码调制方式
  • 数字系统的信噪比,用 E b / N 0 E_b/N_0 Eb/N0衡量,该指标和模拟系统的信噪比概念本质相同: S N = E b N 0 ⋅ R b B \frac{S}{N}=\frac{E_b}{N_0}\cdot\frac{R_b}{B} NS=N0EbBRb
误码率推导

一般而言,数字系统的误码率,就是关于 E b / N 0 E_b/N_0 Eb/N0的函数

下面用2PAM举例,推导误码率:

2PAM的星座点若位于 c = ± E s c=\pm \sqrt {E_s} c=±Es ,则其符号能量为 c 2 = E s c^2=E_s c2=Es,由于2PAM(M=2)无信道编码(R=1),故平均比特能量 E b = E s E_b=E_s Eb=Es
由于接收符号 Y n = I n + n n Y_{n}=I_{n}+n_{n} Yn=In+nn
I n = c I_{n}=c In=c为一个星座点,而 n n n_{n} nn为高斯随机变量,故最终 Y n Y_n Yn也是高斯随机变量(均值为 I n = c = ± E b I_{n}=c=\pm \sqrt {E_b} In=c=±Eb ,方差为 N 0 N_0 N0),分别讨论发射端的符号为 I n = c = ± E b I_{n}=c=\pm \sqrt {E_b} In=c=±Eb 的两种情况: p Y n ∣ I n = E b ( x ) = 1 π N 0 e − ( x − E b ) 2 / N 0 p Y n ∣ I n = − E b ( x ) = 1 π N n e − ( x + E b ) 2 / N 0 p_{Y_{n} \mid I_{n}=\sqrt{E_{b}}}(x)=\frac{1}{\sqrt{\pi N_{0}}} \mathrm{e}^{-\left(x-E_{b}\right)^{2} / N_{0}} \\ p_{Y_{n} \mid I_{n}=-\sqrt{E_{b}}}(x)=\frac{1}{\sqrt{\pi N_{n}}} \mathrm{e}^{-\left(x+E_{b}\right)^{2} / N_{0}} pYnIn=Eb (x)=πN0 1e(xEb)2/N0pYnIn=Eb (x)=πNn 1e(x+Eb)2/N0
在这里插入图片描述
如图所示,如果判决门限为0,则发射符号为 I n = E b I_{n}=\sqrt {E_b} In=Eb 时,接收端错误判决概率为 P ( E ∣ I n = E b ) = ∫ − ∞ 0 p Y n ∣ I n = E b ( x ) d x = 1 π N 0 ∫ − ∞ 0 e − ( x − E b ) 2 / N 0   d x = Q ( 2 E b N 0 ) \begin{aligned} P\left(E \mid I_{n}=\sqrt{\mathcal{E}_{b}}\right) &=\int_{-\infty}^{0} p_{Y_{n} \mid I_{n}=\sqrt{\mathcal{E}_{b}}}(x) \mathrm{d} x \\ &=\frac{1}{\sqrt{\pi N_{0}}} \int_{-\infty}^{0} \mathrm{e}^{-\left(x-\mathcal{E}_{b}\right)^{2} / N_{0}} \mathrm{~d} x \\ &=Q\left(\sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right) \end{aligned} P(EIn=Eb )=0pYnIn=Eb (x)dx=πN0 10e(xEb)2/N0 dx=Q(N02Eb )
同理,由于星座点关于判决门限具有对称性,发射 I n = − E b I_{n}=-\sqrt {E_b} In=Eb 时的误码率 P ( E ∣ I n = − E b ) = Q ( 2 E b N 0 ) P\left(E \mid I_{n}=-\sqrt{E_{b}}\right)=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right) P(EIn=Eb )=Q(N02Eb )
(同时考虑发射不同符号的概率 以及 发射给定符号时的误码率)总体的误码率由全概率公式给出 P ( E ) = P ( E ∣ I n = − E b ) P ( I n = − E b ) + P ( E ∣ I n = E b ) P ( I n = E b ) = Q ( 2 E b N 0 ) P(E)=P\left(E \mid I_{n}=-\sqrt{E_{b}}\right) P\left(I_{n}=-\sqrt{E_{b}}\right)+P\left(E \mid I_{n}=\sqrt{E_{b}}\right) P\left(I_{n}=\sqrt{E_{b}}\right)=Q\left(\sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right) P(E)=P(EIn=Eb )P(In=Eb )+P(EIn=Eb )P(In=Eb )=Q(N02Eb )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值