机器学习架构到海量数据

对于有海量数据运算场景的机器学习项目来说,IRIS 是一个很好的选择,原因包括:

  1. 与 MongoDB 一样,支持使用分片扩展数据存储库。
  2. 支持创建分析型多维数据集,与分片关联可提高性能。
  3. 支持使用各种数据适配器选项按计划或实时收集数据。
  4. 允许使用 Python 或 ObjectScript 中的逻辑自动化整个重复数据删除过程。
  5. 允许使用可视流 (BPL) 和数据转换器 (DTL) 协调并自动化到存储库的数据流。
  6. 通过 docker (IaC) 和 Cloud Manager 脚本提供高级自动扩展支持。
  7. 支持通过 ZPM 在配置中加载 ObjectScript 库。
  8. 与 Python 和 R 的互操作性支持实时执行机器学习。
  9. 允许使用 AutoML 引擎、IntegratedML 对所指向的数据集执行最佳算法。
  10. 允许创建执行后分析,例如 AutoML 预测和分类、Python 和 R 认知处理的输出、BI 数据透视表,并且都带有自己的视图或第三方视图。
  11. 允许使用 JReport 创建高级视图和报告。
  12. 可以通过 API 管理实现最大限度的重用和获利能力。 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值