Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
5 17
4
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <queue>
using namespace std;
int dir[3]= {1,-1};
struct node
{
int x,step;
} s,ss;
int bfs(int n,int k)
{
queue<node>q,qq;
s.x=n;
s.step=0;
int vis[100010]= {0};
q.push(s);
while (!q.empty())
{
s=q.front();
q.pop();
if (s.x==k)
return s.step;
for (int i=0; i<2; i++)
{
ss.x=s.x+dir[i];
ss.step=s.step+1;
if (ss.x>=0&&ss.x<=100000)
if (!vis[ss.x])
{
vis[ss.x]=1;
q.push(ss);
}
}
ss.x=s.x*2;
ss.step=s.step+1;
if (ss.x>=0&&ss.x<=100000)
{
if (!vis[ss.x])
{
vis[ss.x]=1;
q.push(ss);
}
}
}
return 0;
}
int main ()
{
int n,k;
while (~scanf("%d%d",&n,&k))
{
printf ("%d\n",bfs(n,k));
}
return 0;
}