C - Catch That Cow 广度优先搜索

C - Catch That Cow

Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.

* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.

If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?

Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.

注:本题之所以用广度优先搜索,是因为超找的是最短路径,走哪一条路最短,所以采用广度优先搜索,广度优先搜索采用队列的形式来实现,那么现在就来总结一下DFS和BFS的区别和常用规格。

BFS算法:

思想:一直往深处走,直到找到解或者走不下去为止

大体框架:

DFS(dep,.......)

{

    if(找到解 || 走不下去)

    {

         .........

        return ;

     }

    枚举下一种情况,DFS(dep+1,........)

}


BFS算法:

思路:

1.从初始状态S开始,利用规则,生成下一层的状态。

2.顺序检查下一层的所有状态,看是否出现目标状态G。

否则就对该层所有状态节点,分别利用规则。生成再下一层的所有状态节点。

3.继续按照上面思想生成下一层的所有状态节点,这样一层一层往下展开。

直到出现目标状态为止

先遍历离起点近的,再到远的,网上有一个很形象的例子:你的眼镜掉在地上以后,你趴在地板上找。你总是先摸离你最近的地方,如果没有,再摸距离较远的地方。

通常用队列来实现

初始化队列Q

Q={起点s};

标记s为已访问;

while(Q非空)

{

   取Q队首元素u;

   u出队;

if(u==目标状态)

{.............}

所有与u相邻且未被访问的点进入队列;

标记u为已访问;

}

这个网址有BFS例子具体的实现过程:

https://wenku.baidu.com/view/97c9220452ea551810a687e4.html

参考文献::

http://blog.sina.com.cn/s/blog_130976afd0102v4le.html


AC代码:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;

const int N = 200100;
int n, k;
struct node
{
    int x, step;
};
queue<node> Q;
int vis[N];

void BFS()
{
    int X, STEP;
    while(!Q.empty())
    {
        node w2= Q.front();
        Q.pop();
		X = w2.x;
		STEP = w2.step;
        if(X == k)
        {
            printf("%d\n",STEP);
            return ;
        }
        if(X >= 1 && vis[X - 1]==0)
        {
            node w3;
            vis[X - 1] = 1;
            w3.x = X - 1;
            w3.step = STEP + 1;
            Q.push(w3);
        }
        if(X <= k && vis[X + 1]==0)
        {
            node w3;
            vis[X + 1] = 1;
            w3.x = X + 1;
            w3.step = STEP + 1;
            Q.push(w3);
        }
        if(X <= k && vis[X * 2]==0)
        {
            node w3;
            vis[X * 2] = 1;
            w3.x = 2 * X;
            w3.step = STEP + 1;
            Q.push(w3);
        }
    }
}

int main()
{
    while(scanf("%d%d",&n,&k)!=EOF)
    {
        while(!Q.empty())
            Q.pop();
        memset(vis,0,sizeof(vis));
        vis[n] = 1;
        node w1;
        w1.x = n;
        w1.step = 0;
        Q.push(w1);
		BFS();
    }
    return 0;
}

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值