491.递增子序列
题目链接:复原IP地址
题目描述:给你一个整数数组
nums
,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。
解题思想:
在90.子集II中我们是通过排序,再加一个标记数组来达到去重的目的。而本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。
所以不能使用之前的去重逻辑!
在图中可以看出,同一父节点下的同层上使用过的元素就不能再使用了,本题中通过使用set来记录同一层中已经使用过的元素。
class Solution {
public:
vector<vector<int>> findSubsequences(vector<int>& nums) {
backtracking(nums, 0);
return result;
}
private:
vector<int> path;
vector<vector<int>> result;
void backtracking(vector<int>& nums, int startIndex) {
if (path.size() > 1)
result.push_back(path);
if (startIndex >= nums.size())
return;
unordered_set<int> set;
for (int i = startIndex; i < nums.size(); i++) {
if (path.size() > 0 && nums[i] < path.back())
continue;
if (set.find(nums[i])!=set.end())
continue;
path.push_back(nums[i]);
set.insert(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
};
这也是需要注意的点,unordered_set<int> uset;
是记录本层元素是否重复使用,新的一层uset都会重新定义(清空),所以要知道uset只负责本层!
46.全排列
题目链接:全排列
题目描述:给定一个不含重复数字的数组
nums
,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。
解题思想:
我以[1,2,3]为例,抽象成树形结构如下
首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方。
可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。
但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:
class Solution {
public:
vector<vector<int>> permute(vector<int>& nums) {
vector<bool> used(nums.size(),false);
backtracking(nums, used);
return result;
}
private:
vector<int> path;
vector<vector<int>> result;
void backtracking(vector<int>& nums, vector<bool> used) {
if (path.size() == nums.size()) {
result.push_back(path);
return;
}
for (int i = 0; i < nums.size(); i++) {
if (used[i]==true)
continue;
path.push_back(nums[i]);
used[i]=true;
backtracking(nums,used);
path.pop_back();
used[i]=false;
}
}
};
47.全排列 II
题目链接:全排列 II
题目描述:给定一个可包含重复数字的序列
nums
,按任意顺序 返回所有不重复的全排列。
解题思想:
还要强调的是去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了。
我以示例中的 [1,1,2]为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:
图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。
一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果。
class Solution {
public:
vector<vector<int>> permuteUnique(vector<int>& nums) {
vector<bool> used(nums.size(), false);
sort(nums.begin(), nums.end());
backtrcking(nums, used);
return result;
}
private:
vector<int> path;
vector<vector<int>> result;
void backtrcking(vector<int>& nums, vector<bool>& used) {
if (path.size() == nums.size()) {
result.push_back(path);
return;
}
for (int i = 0; i < nums.size(); i++) {
if (used[i] == true)
continue;
if (i > 0 && nums[i - 1] == nums[i] && used[i - 1] == false)
continue;
path.push_back(nums[i]);
used[i] = true;
backtrcking(nums, used);
path.pop_back();
used[i] = false;
}
}
};