代码随想录算法训练营第41天| 343. 整数拆分、96.不同的二叉搜索树

343. 整数拆分

题目链接:整数拆分

题目描述:给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

解题思想:

按照动规五部曲来分析:

  1. 确定dp数组(dp table)以及下标的含义
    dp[i] :表示整数i拆分为k个正整数的最大乘积
  2. 确定递推公式
    dp[i] 的值涉及对i的两种拆分方式,将i拆分为两个数j和i-j:dp[i]=j*(i-j);另一种是将i拆分为多个数:dp[i]=j*dp[i-j]
  3. p数组的初始化
    dp[0]=dp[1]=0;dp[2] = 1;
  4. 确定遍历顺序
    确定遍历顺序,先来看看递归公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j)); dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。
class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n + 1);
        dp[0] = 0;
        dp[1] = 0;
        dp[2] = 1;
        for (int i = 3; i <= n; i++) {
            for (int j = 1; j < i; j++) {
                dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
            }
        }
        return dp[n];
    }
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n)

96.不同的二叉搜索树

题目链接:不同的二叉搜索树

题目描述:给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

解题思想:

  1. 确定dp数组(dp table)以及下标的含义
    dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]
  2. 确定递推公式
    在上面的分析中,其实已经看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]
    j相当于是头结点的元素,从1遍历到i为止。所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量
  3. dp数组如何初始化
    初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。初始化dp[0] = 1
  4. 确定遍历顺序
    首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。

这题的难点是想递推公式:基本思路就是求节点值从1-n的二叉搜索树都多少种,是头节点分别为1-n的二叉树的求和。**1-n的二叉树的种树其实和2-(n+1)是相同的,依次类推。**因此,以j为头节点的左子树有dp[j-1]种,右子树有dp[i-j]种,j为头节点的二叉树的种树总数为dp[j - 1] * dp[i - j]种。

class Solution {
public:
    int numTrees(int n) {
        vector<int> dp(n + 1, 0);
        dp[0] = 1;
        dp[1] = 1;
        for (int i = 2; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                dp[i] += dp[j - 1] * dp[i - j];
            }
        }
        return dp[n];
    }
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值