343. 整数拆分
题目链接:整数拆分
题目描述:给定一个正整数
n
,将其拆分为k
个 正整数 的和(k >= 2
),并使这些整数的乘积最大化。返回 你可以获得的最大乘积 。
解题思想:
按照动规五部曲来分析:
- 确定dp数组(dp table)以及下标的含义
dp[i] :表示整数i拆分为k个正整数的最大乘积 - 确定递推公式
dp[i] 的值涉及对i的两种拆分方式,将i拆分为两个数j和i-j:dp[i]=j*(i-j)
;另一种是将i拆分为多个数:dp[i]=j*dp[i-j]
- p数组的初始化
dp[0]=dp[1]=0;dp[2] = 1; - 确定遍历顺序
确定遍历顺序,先来看看递归公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j)); dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。
class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n + 1);
dp[0] = 0;
dp[1] = 0;
dp[2] = 1;
for (int i = 3; i <= n; i++) {
for (int j = 1; j < i; j++) {
dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
}
}
return dp[n];
}
};
- 时间复杂度:O(n^2)
- 空间复杂度:O(n)
96.不同的二叉搜索树
题目链接:不同的二叉搜索树
题目描述:给你一个整数
n
,求恰由n
个节点组成且节点值从1
到n
互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。
解题思想:
- 确定dp数组(dp table)以及下标的含义
dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]。 - 确定递推公式
在上面的分析中,其实已经看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]
j相当于是头结点的元素,从1遍历到i为止。所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量 - dp数组如何初始化
初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。初始化dp[0] = 1 - 确定遍历顺序
首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。
这题的难点是想递推公式:基本思路就是求节点值从1-n的二叉搜索树都多少种,是头节点分别为1-n的二叉树的求和。**1-n的二叉树的种树其实和2-(n+1)是相同的,依次类推。**因此,以j为头节点的左子树有dp[j-1]种,右子树有dp[i-j]种,j为头节点的二叉树的种树总数为dp[j - 1] * dp[i - j]种。
class Solution {
public:
int numTrees(int n) {
vector<int> dp(n + 1, 0);
dp[0] = 1;
dp[1] = 1;
for (int i = 2; i <= n; i++) {
for (int j = 1; j <= i; j++) {
dp[i] += dp[j - 1] * dp[i - j];
}
}
return dp[n];
}
};
- 时间复杂度:O(n^2)
- 空间复杂度:O(n)