10-排序6 Sort with Swap(0, i)(25 分)
题目地址:10-排序6 Sort with Swap(0, i)(25 分)
题目描述:
Given any permutation of the numbers {0, 1, 2,…, N−1}, it is easy to sort them in increasing order. But what if Swap(0, *) is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
输入格式:
Each input file contains one test case, which gives a positive N(≤105) N ( ≤ 10 5 ) followed by a permutation sequence of {0, 1, …, N−1}. All the numbers in a line are separated by a space.输出格式:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
解题方法:
这道题关键在于怎样才能知道交换的最少次数。然而事实上有这样一个定理,那就是:
PS:这张图是从MOOC上盗来的,可以忽略key那一栏。
我们可以把table作为我们要待排的数组,A作为table的下标,找环的方法就是从没有访问过得点开始,第一个是3,然后找table[3],得到1,找table[1]得到5,找table[5]=0;由于table[0]已经被访问过了,所以环到这里就结束了。其他2个环的找法也类似。从中可以看出,我们有3个不同环。
由于题目中只能swap(0, x)也就是只能有0作为媒介去交换,所以需要区分存在0的环和不存在0的环。
- 存在0的环:
只需要交换元素个数-1次 - 不存在0的环:
需要交换元素个数+1次
易错点:
1. 需要考虑0为第一个元素的情况,在这种情况下所有的待排序环要排序的次数都是n+1次
2. 如果0非第一个元素,那么在计算排序次数时,对其中1个环(存在0)排序n-1次,剩余的环排序n+1次
程序:
#include <stdio.h>
#include <map>
using namespace std;
struct Node
{
int data;
bool check;
};
int main(int argc, char const *argv[])
{
int N, j = 0, nomovecnt = 0, flag = 0, out;
scanf("%d", &N);
Node Arr[N];
map <int, int> M;
for (int i = 0; i < N; i++)
{ /* 输入数据并初始化结构体数组 */
scanf("%d", &Arr[i].data);
Arr[i].check = false;
M[i] = 1; /* 保存映射,方便寻找还未访问的元素下标 */
}
while (!M.empty())
{
int cnt = 0, idx = M.begin()->first; /* 返回map第一个键值 */
while (Arr[idx].check == false)
{
Arr[idx].check = true; /* 设置为标记 */
idx = Arr[idx].data;
M.erase(idx); /* 删除该键 */
cnt++;
}
j++;
if (cnt == 1)
{
if (idx == 0)
flag = 1;
nomovecnt++; /* 如果有元素不需要移动 */
}
}
out = N-nomovecnt+j-nomovecnt; /* 0为首元素需要排序的次数 */
if (flag == 0)
out -= 2; /* 如果0不是首元素,可以少排2次 */
printf("%d\n", out);
return 0;
}
如果对您有帮助,帮忙点个小拇指呗~