[论文阅读笔记]Towards Evaluating the Robustness of Neural Networks(CW)

Towards Evaluating the Robustness of Neural Networks(C&W)(2017 Best Student Paper)

文章简介:

  • 证明defensive distillation不能显著地提高模型的鲁棒性
  • 介绍了3种新的攻击算法,可以在distilledundistilled神经网络达到100%的攻击成功率
  • 本文的攻击相比于以前的攻击通常会更有效
  • 本文的对抗性例子可以从不安全的网络模型迁移到distilled(安全)的网络模型去
  • 数据集:MNIST、CIFAR-10、ImageNet
  • 本文主要研究Targeted Attacks
  • 由于defensive distillation并不能真正地避免对抗样本的出现,作者认为原因可能是对抗样本的存在原因在于神经网络局部线性的性质[47] (这是一种说法,也有其他说法)

算法思想:

作者把构建对抗样本的过程转化为一个最优化问题,如下图所示:

但是其中的等式约束难以求导,所以作者将这一等式进行了转化:
C ( x + δ ) = t ⇒ f ( x + δ ) ≤ 0 C(x+\delta) = t \Rightarrow f(x+\delta) \leq 0 C(x+δ)=tf(x+δ)0
并给出一共7种选择

最终将原优化问题转为

接下来,为了解决box约束问题(即 0 ≤ x i + δ i ≤ 1 0\leq x_i + \delta_i \leq 1 0xi+δi1),作者采用了3种方法进行选择

  • Projected gradient descent:每实施一步梯度下降,就把计算的结果限制在box内,该方法的缺点就是每次传入下一步的结果都不是真实值
  • Clipped gradient descent:并没有真正地裁减 x i x_i xi,而是直接把约束加入到目标函数中,即

f ( x + δ ) ⇒ f ( min ⁡ ( max ⁡ ( x + δ , 0 ) , 1 ) ) f(x+\delta) \Rightarrow f(\min(\max(x+\delta, 0), 1)) f(x+δ)f(min(max(x+δ,0),1))

  但这种方法,只是对目标函数进行了约束,可能会存在 x i + δ i x_i + \delta_i xi+δi超过最大值的情况,这样就会出现梯度为0的结果,以至于 x i x_i xi即使减少,从梯度角度也无法检测到。

  • Change of variables:通过引入变量 w i w_i wi,使得 x i + δ i x_i + \delta_i xi+δi满足box约束,其方法为

最后的结果如下:

  • Best Case: target label是最容易攻击的label
  • Worst Case:target label是最难攻击的label
  • Average Case:target label是随机挑选的label

可以发现Projected Descent在处理box约束是优于其他两种策略,但Change of Variable寻求的扰动一般都是较小的,此外 f 2 , f 3 , f 4 f_2, f_3, f_4 f2,f3,f4效果欠佳,但 f 6 f_6 f6在这7种策略中基本上是最好的:需要的扰动一般最小,且成功率高。

后面作者还采用三种攻击方法(其本质区别就是范数约束区别)

  • L 2    A t t a k L_2 \,\,Attak L2Attak:下面的 f f f选择的就是之前测试结果中效果最好的 f 6 f_6 f6, 只是对 k k k解除了必须为0的约束

参数 k k k鼓励算法在寻找对抗样本的时候,将其归为target类时有更高的置信度,同时能够增加迁移率。原因就是他更加鼓励分为其他类时,最大的置信度要比target类的置信度会往k的差距优化。

  • L 0    A t t a k L_0 \,\,Attak L0Attak:因为L0距离是无法微分的,所以作者采用迭代的方法,使用L2 Attack来确定哪些像素不重要,对不重要的像素点就固定着。详细过程如下(还得详细看下代码才行文章有点不太清晰):

  a) 首先通过L2 Attack方法获得 δ \delta δ, 使得 x + δ x + \delta x+δ是一个对抗样本。

  b)计算梯度 g g g
g = ∇ f ( x + δ ) g = \nabla f(x+\delta) g=f(x+δ)
然后选择 i = arg ⁡ min ⁡ i g i ⋅ δ i i = \arg \min_i g_i \cdot \delta_i i=argminigiδi,这就是我们所要固定的像素点即把他移除出需要更新的像素点集(allowed set)
  c) 重复以上过程,知道L2 Attak无法找到对抗样本为止

  • L ∞    A t t a c k L_{\infin} \,\,Attack LAttack:该攻击方法不是完全可微的,并且标准的梯度下降算法并不能达到非常好的效果,即采用如下策略时,会出现一个问题:无穷范数只惩罚最大的那个值

   假设 δ i = 0.5 \delta_i = 0.5 δi=0.5 δ j = 0.5 − ϵ \delta_j = 0.5 - \epsilon δj=0.5ϵ,则 L ∞    n o r m L_{\infin} \,\, norm Lnorm只会惩罚 δ i \delta_i δi而不会去惩罚 δ j \delta_j δj,最后可能会使得优化的最终结果是 δ i = δ j = 0.5 \delta_i = \delta_j = 0.5 δi=δj=0.5,而没有任何意义。

所以作者通过iterative attack来解决这个问题,作者把原目标函数中的约束替换,如下:
该方法惩罚所有大于 τ \tau τ的值,并且如果在每一轮迭代中,如果所有的 δ i &lt; τ \delta_i &lt; \tau δi<τ,则 τ = 0.9 τ \tau = 0.9\tau τ=0.9τ


由于这些笔记是之前整理的,所以可能会参考其他博文的见解,如果引用了您的文章的内容请告知我,我将把引用出处加上~
如果觉得我有地方讲的不好的或者有错误的欢迎给我留言,谢谢大家阅读(
点个赞我可是会很开心的哦)~

最近,对于图神经网络的研究日益深入,引起了广泛关注。图神经网络是一种能够对图数据进行建模和分析的神经网络模型。它可以处理任意结构的图形数据,如社交网络、蛋白质互作网络等。 在过去的几年中,研究者们提出了许多图神经网络的模型和方法。然而,这些方法仍然面临一些挑战,例如有效地处理大型图形数据、学习高质量的图嵌入表示以及推理和预测复杂的图结构属性等。 为了克服这些挑战,研究人员开始通过增加神经网络的深度来探索更深的图神经网络模型。深度模型具有更强大的表达能力和学习能力,可以更好地捕捉图数据中的关系和模式。这些深层图神经网络可以通过堆叠多个图神经网络层来实现。每个图神经网络层都会增加一定的复杂性和抽象级别,从而逐渐提高图数据的表达能力。 除了增加深度外,研究人员还提出了一些其他的改进来进一步提高图神经网络的性能。例如,引入注意力机制可以使模型能够自动地选择重要的节点和边来进行信息传播。此外,研究人员还研究了如何通过引入图卷积操作来增强图数据的局部性,从而提高图神经网络模型的效果。 综上所述,对于更深层的图神经网络的研究将在处理大规模图形数据、学习高质量的图表示以及进行复杂图结构属性的推理方面取得更好的性能。随着深度图神经网络的推广和应用,我们可以预见它将在许多领域,如社交网络分析、推荐系统和生物信息学中发挥重要作用,为我们带来更多的机遇和挑战。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值